
Package ‘unbalanced’
June 26, 2015

Type Package

Title Racing for Unbalanced Methods Selection

Version 2.0

Date 2015-06-25

Author Andrea Dal Pozzolo, Olivier Caelen and Gianluca Bontempi

Maintainer Andrea Dal Pozzolo <adalpozz@ulb.ac.be>

Description A dataset is said to be unbalanced when the class of interest (minor-
ity class) is much rarer than normal behaviour (majority class). The cost of missing a minor-
ity class is typically much higher that missing a majority class. Most learning sys-
tems are not prepared to cope with unbalanced data and several techniques have been pro-
posed. This package implements some of most well-known techniques and propose a racing al-
gorithm to select adaptively the most appropriate strategy for a given unbalanced task.

License GPL (>= 3)

URL http://mlg.ulb.ac.be

Depends mlr, foreach, doParallel

Imports FNN, RANN

Suggests randomForest, ROCR

NeedsCompilation no

Repository CRAN

Date/Publication 2015-06-26 13:34:37

R topics documented:
unbalanced-package . 2
ubBalance . 3
ubCNN . 5
ubENN . 6
ubIonosphere . 7
ubNCL . 8
ubOSS . 9
ubOver . 10

1

http://mlg.ulb.ac.be

2 unbalanced-package

ubRacing . 11
ubSMOTE . 13
ubSmoteExs . 14
ubTomek . 15
ubUnder . 16

Index 18

unbalanced-package Racing for Unbalanced Methods Selection

Description

A dataset is said to be unbalanced when the class of interest (minority class) is much rarer than
normal behaviour (majority class). The cost of missing a minority class is typically much higher
that missing a majority class. Most learning systems are not prepared to cope with unbalanced
data and several techniques have been proposed to rebalance the classes. This package implements
some of most well-known techniques and propose a racing algorithm [2] to select adaptively the
most appropriate strategy for a given unbalanced task [1].

Details

Package: unbalanced
Type: Package
Version: 2.0
Date: 2015-06-17
License: GPL (>= 3)

Author(s)

Andrea Dal Pozzolo <adalpozz@ulb.ac.be>, Olivier Caelen <olivier.caelen@worldline.com>
and Gianluca Bontempi <gbonte@ulb.ac.be>

Maintainer: Andrea Dal Pozzolo

Andrea Dal Pozzolo and Gianluca Bontempi are with the Machine Learning Group, Computer
Science Department, Faculty of Sciences ULB, Universite Libre de Bruxelles, Brussels, Belgium.
Olivier Caelen is with the Fraud Risk Management Analytics, Worldline, Belgium.
The work of Andrea Dal Pozzolo is supported by the Doctiris scholarship of Innoviris, Belgium.

References

1. Dal Pozzolo, Andrea, et al. "Racing for unbalanced methods selection." Intelligent Data Engi-
neering and Automated Learning - IDEAL 2013. Springer Berlin Heidelberg, 2013. 24-31.
2. Birattari, Mauro, et al. "A Racing Algorithm for Configuring Metaheuristics."GECCO. Vol. 2.
2002.

http://mlg.ulb.ac.be

ubBalance 3

See Also

ubBalance, ubRacing

Examples

#use Racing to select the best technique for an unbalanced dataset
library(unbalanced)
data(ubIonosphere)

#configure sampling parameters
ubConf <- list(type="ubUnder", percOver=200, percUnder=200, k=2, perc=50, method="percPos", w=NULL)

#load the classification algorithm that you intend to use inside the Race
#see 'mlr' package for supported algorithms
library(randomForest)
#use only 5 trees
results <- ubRacing(Class ~., ubIonosphere, "randomForest", positive=1, ubConf=ubConf, ntree=5)

try with 500 trees
results <- ubRacing(Class ~., ubIonosphere, "randomForest", positive=1, ubConf=ubConf, ntree=500)
let's try with a different algorithm
library(e1071)
results <- ubRacing(Class ~., ubIonosphere, "svm", positive=1, ubConf=ubConf)
library(rpart)
results <- ubRacing(Class ~., ubIonosphere, "rpart", positive=1, ubConf=ubConf)

ubBalance Balance wrapper

Description

The function implements several techniques to re-balance or remove noisy instances in unbalanced
datasets.

Usage

ubBalance(X, Y, type="ubSMOTE", positive=1, percOver=200, percUnder=200,
k=5, perc=50, method="percPos", w=NULL, verbose=FALSE)

Arguments

X the input variables of the unbalanced dataset.

Y the response variable of the unbalanced dataset.

type the balancing technique to use (ubOver, ubUnder, ubSMOTE, ubOSS, ubCNN,
ubENN, ubNCL, ubTomek).

positive the majority class of the response variable.

percOver parameter used in ubSMOTE

4 ubBalance

percUnder parameter used in ubSMOTE

k parameter used in ubOver, ubSMOTE, ubCNN, ubENN, ubNCL

perc parameter used in ubUnder

method parameter used in ubUnder

w parameter used in ubUnder

verbose print extra information (TRUE/FALSE)

Details

The argument type can take the following values: "ubOver" (over-sampling), "ubUnder" (under-
sampling), "ubSMOTE" (SMOTE), "ubOSS" (One Side Selection), "ubCNN" (Condensed Near-
est Neighbor), "ubENN" (Edited Nearest Neighbor), "ubNCL" (Neighborhood Cleaning Rule),
"ubTomek" (Tomek Link).

Value

The function returns a list:

X input variables

Y response variable

id.rm index of instances removed if availble in the technique selected

References

Dal Pozzolo, Andrea, et al. "Racing for unbalanced methods selection." Intelligent Data Engineer-
ing and Automated Learning - IDEAL 2013. Springer Berlin Heidelberg, 2013. 24-31.

See Also

ubRacing, ubOver, ubUnder, ubSMOTE, ubOSS, ubCNN, ubENN, ubNCL, ubTomek

Examples

library(unbalanced)
data(ubIonosphere)
n<-ncol(ubIonosphere)
output<-ubIonosphere$Class
input<-ubIonosphere[,-n]

#balance the dataset
data<-ubBalance(X= input, Y=output, type="ubSMOTE", percOver=300, percUnder=150, verbose=TRUE)
balancedData<-cbind(data$X,data$Y)

ubCNN 5

ubCNN Condensed Nearest Neighbor

Description

Condensed Nearest Neighbor selects the subset of instances that are able to correctly classifing the
original datasets using a one-nearest neighbor rule.

Usage

ubCNN(X, Y, k = 1, verbose = T)

Arguments

X the input variables of the unbalanced dataset.

Y the response variable of the unbalanced dataset. It must be a binary factor where
the majority class is coded as 0 and the minority as 1.

k the number of neighbours to use

verbose print extra information (TRUE/FALSE)

Details

In order to compute nearest neighbors, only numeric features are allowed.

Value

The function returns a list:

X input variables

Y response variable

References

P. E. Hart. The condensed nearest neighbor rule. IEEE Transactions on Informa- tion Theory, 1968.

See Also

ubBalance

Examples

library(unbalanced)
data(ubIonosphere)
n<-ncol(ubIonosphere)
output<-ubIonosphere$Class
input<-ubIonosphere[,-n]

data<-ubCNN(X=input, Y= output)

6 ubENN

newData<-cbind(data$X, data$Y)

ubENN Edited Nearest Neighbor

Description

Edited Nearest Neighbor removes any example whose class label differs from the class of at least
two of its three nearest neighbors.

Usage

ubENN(X, Y, k = 3, verbose = TRUE)

Arguments

X the input variables of the unbalanced dataset.

Y the response variable of the unbalanced dataset. It must be a binary factor where
the majority class is coded as 0 and the minority as 1.

k the number of neighbours to use

verbose print extra information (TRUE/FALSE)

Details

In order to compute nearest neighbors, only numeric features are allowed.

Value

The function returns a list:

X input variables

Y response variable

References

D. Wilson. Asymptotic properties of nearest neighbor rules using edited data. Systems, Man and
Cybernetics, IEEE Transactions on, 408-421, 1972.

See Also

ubBalance

ubIonosphere 7

Examples

library(unbalanced)
data(ubIonosphere)
n<-ncol(ubIonosphere)
output<-ubIonosphere$Class
input<-ubIonosphere[,-n]

data<-ubENN(X=input, Y= output)
newData<-cbind(data$X, data$Y)

ubIonosphere Ionosphere dataset

Description

The datasets is a modifcation of Ionosphere dataset cotained in "mlbench" package. It contains
only numerical input variables, i.e. the first two variables are removed. The Class variable orginally
taking values bad and good has been transformed into a factor where 1 denotes bad and 0 good.

Usage

data(ubIonosphere)

Format

A data frame with 351 observations on 33 independent variables (all numerical) and one last defin-
ing the class (1 or 0).

Source

http://cran.r-project.org/package=mlbench

Examples

data(ubIonosphere)
summary(ubIonosphere)

http://cran.r-project.org/package=mlbench

8 ubNCL

ubNCL Neighborhood Cleaning Rule

Description

Neighborhood Cleaning Rule modifies the Edited Nearest Neighbor method by increasing the role
of data cleaning. Firstly, NCL removes negatives examples which are misclassified by their 3-
nearest neighbors. Secondly, the neighbors of each positive examples are found and the ones be-
longing to the majority class are removed.

Usage

ubNCL(X, Y, k = 3, verbose = TRUE)

Arguments

X the input variables of the unbalanced dataset.

Y the response variable of the unbalanced dataset. It must be a binary factor where
the majority class is coded as 0 and the minority as 1.

k the number of neighbours to use

verbose print extra information (TRUE/FALSE)

Details

In order to compute nearest neighbors, only numeric features are allowed.

Value

The function returns a list:

X input variables

Y response variable

References

J. Laurikkala. Improving identification of difficult small classes by balancing class distribution.
Artificial Intelligence in Medicine, pages 63-66, 2001.

See Also

ubBalance

ubOSS 9

Examples

library(unbalanced)
data(ubIonosphere)
n<-ncol(ubIonosphere)
output<-ubIonosphere$Class
input<-ubIonosphere[,-n]

data<-ubNCL(X=input, Y= output)
newData<-cbind(data$X, data$Y)

ubOSS One Side Selection

Description

One Side Selection is an undersampling method resulting from the application of Tomek links
followed by the application of Condensed Nearest Neighbor.

Usage

ubOSS(X, Y, verbose = TRUE)

Arguments

X the input variables of the unbalanced dataset.

Y the response variable of the unbalanced dataset. It must be a binary factor where
the majority class is coded as 0 and the minority as 1.

verbose print extra information (TRUE/FALSE)

Details

In order to compute nearest neighbors, only numeric features are allowed.

Value

The function returns a list:

X input variables

Y response variable

References

M. Kubat, S. Matwin, et al. Addressing the curse of imbalanced training sets: one-sided se-
lection. In MACHINE LEARNING-INTERNATIONAL WORKSHOP THEN CONFERENCE-,
pages 179-186. MORGAN KAUFMANN PUBLISHERS, INC., 1997.

10 ubOver

See Also

ubBalance

Examples

library(unbalanced)
data(ubIonosphere)
n<-ncol(ubIonosphere)
output<-ubIonosphere$Class
input<-ubIonosphere[,-n]

data<-ubOSS(X=input, Y= output)
newData<-cbind(data$X, data$Y)

ubOver Over-sampling

Description

The function replicates randomly some instances from the minority class in order to obtain a final
dataset with the same number of instances from the two classes.

Usage

ubOver(X, Y, k = 0, verbose=TRUE)

Arguments

X the input variables of the unbalanced dataset.

Y the response variable of the unbalanced dataset. It must be a binary factor where
the majority class is coded as 0 and the minority as 1.

k defines the sampling method.

verbose print extra information (TRUE/FALSE)

Details

If K=0: sample with replacement from the minority class until we have the same number of in-
stances in each class. If K>0: sample with replacement from the minority class until we have
k-times the orginal number of minority instances.

Value

The function returns a list:

X input variables

Y response variable

ubRacing 11

See Also

ubBalance

Examples

library(unbalanced)
data(ubIonosphere)
n<-ncol(ubIonosphere)
output<-ubIonosphere$Class
input<-ubIonosphere[,-n]

data<-ubOver(X=input, Y= output)
newData<-cbind(data$X, data$Y)

ubRacing Racing

Description

The function implementes the Racing algorithm [2] for selecting the best technique to re-balance or
remove noisy instances in unbalanced datasets [1].

Usage

ubRacing(formula, data, algo, positive=1, ncore=1, nFold=10, maxFold=10, maxExp=100,
stat.test="friedman", metric="f1", ubConf, verbose=FALSE, ...)

Arguments

formula formula describing the model to be fitted.

data the unbalanced dataset

algo the classification algorithm to use with the mlr package.

positive label of the positive (minority) class.

ncore the number of core to use in the Race. Race is performed with parallel exectuion
when ncore > 1.

nFold number of folds in the cross-validation that provides the subset of data to the
Race

maxFold maximum number of folds to use in the Race

maxExp maximum number of experiments to use in the Race

stat.test statistical test to use to remove candidates which perform significantly worse
than the best.

metric metric used to asses the classification.

ubConf configuration of the balancing techniques used in the Race.

verbose print extra information (TRUE/FALSE)

... additional arguments pass to train function in mlr package.

12 ubRacing

Details

The argument metric can take the following values: "gmean", "f1" (F-score or F-measure), "auc"
(Area Under ROC curve). Argument stat.test defines the statistical test used to remove candidates
during the race. It can take the following values: "friedman" (Friedman test), "t.bonferroni" (t-test
with bonferroni correction), "t.holm" (t-test with holm correction), "t.none" (t-test without correc-
tion), "no" (no test, the Race continues until new subsets of data are provided by the cross valida-
tion). Argument balanceConf is a list passed to function ubBalance that is used for configuration.

Value

The function returns a list:

Race matrix containing accuracy results for each technique in the Race.

best best technique selected in the Race.

avg average of the metric used in the Race for the technique selected.

sd standard deviation of the metric used in the Race for the technique selected.

N.test number of experiments used in the Race.

Gain % of computational gain with resepct to the maximum number of experiments
given by the cross validation.

Note

The function ubRacing is a modified version of the race function availble in the race package:
http://cran.r-project.org/package=race.

References

1. Dal Pozzolo, Andrea, et al. "Racing for unbalanced methods selection." Intelligent Data Engi-
neering and Automated Learning - IDEAL 2013. Springer Berlin Heidelberg, 2013. 24-31.
2. Birattari, Mauro, et al. "A Racing Algorithm for Configuring Metaheuristics."GECCO. Vol. 2.
2002.

See Also

ubBalance, ubOver, ubUnder, ubSMOTE, ubOSS, ubCNN, ubENN, ubNCL, ubTomek

Examples

#use Racing to select the best technique for an unbalanced dataset
library(unbalanced)
data(ubIonosphere)

#configure sampling parameters
ubConf <- list(type="ubUnder", percOver=200, percUnder=200, k=2, perc=50, method="percPos", w=NULL)

#load the classification algorithm that you intend to use inside the Race
#see 'mlr' package for supported algorithms
library(randomForest)
#use only 5 trees

http://cran.r-project.org/package=race

ubSMOTE 13

results <- ubRacing(Class ~., ubIonosphere, "randomForest", positive=1, ubConf=ubConf, ntree=5)

try with 500 trees
results <- ubRacing(Class ~., ubIonosphere, "randomForest", positive=1, ubConf=ubConf, ntree=500)
let's try with a different algorithm
library(e1071)
results <- ubRacing(Class ~., ubIonosphere, "svm", positive=1, ubConf=ubConf)
library(rpart)
results <- ubRacing(Class ~., ubIonosphere, "rpart", positive=1, ubConf=ubConf)

ubSMOTE SMOTE

Description

Function that implements SMOTE (synthetic minority over-sampling technique)

Usage

ubSMOTE(X, Y, perc.over = 200, k = 5, perc.under = 200, verbose = TRUE)

Arguments

X the input variables of the unbalanced dataset.

Y the response variable of the unbalanced dataset. It must be a binary factor where
the majority class is coded as 0 and the minority as 1.

perc.over per.over/100 is the number of new instances generated for each rare instance. If
perc.over < 100 a single instance is generated.

k the number of neighbours to consider as the pool from where the new examples
are generated

perc.under perc.under/100 is the number of "normal" (majority class) instances that are
randomly selected for each smoted observation.

verbose print extra information (TRUE/FALSE)

Details

Y must be a factor.

Value

The function returns a list:

X input variables

Y response variable

Note

Original code from DMwR package

14 ubSmoteExs

References

Chawla, Nitesh V., et al. "SMOTE: synthetic minority over-sampling technique." arXiv preprint
arXiv:1106.1813 (2011).

See Also

ubBalance

Examples

library(unbalanced)
data(ubIonosphere)
n<-ncol(ubIonosphere)
output<-ubIonosphere$Class
input<-ubIonosphere[,-n]

data<-ubSMOTE(X=input, Y= output)
newData<-cbind(data$X, data$Y)

ubSmoteExs ubSmoteExs

Description

Function used in SMOTE to generate new minority examples.

Usage

ubSmoteExs(data, tgt, N = 200, k = 5)

Arguments

data the data.frame

tgt the index of the target/response variables

N N/100 is the number of new instances generated for each rare instance. If N <
100 a single instance is generated

k the number of neighbours to consider as the pool from where the new examples
are generated

Details

This function does not handle vectors

Value

newCases

ubTomek 15

See Also

ubSMOTE

ubTomek Tomek Link

Description

The function finds the points in the dataset that are tomek link using 1-NN and then removes only
majority class instances that are tomek links.

Usage

ubTomek(X, Y, verbose = TRUE)

Arguments

X the input variables of the unbalanced dataset.

Y the response variable of the unbalanced dataset. It must be a binary factor where
the majority class is coded as 0 and the minority as 1.

verbose print extra information (TRUE/FALSE)

Details

In order to compute nearest neighbors, only numeric features are allowed.

Value

The function returns a list:

X input variables

Y response variable

id.rm index of instances removed

References

I. Tomek. Two modifications of cnn. IEEE Trans. Syst. Man Cybern., 6:769-772, 1976.

See Also

ubBalance

16 ubUnder

Examples

library(unbalanced)
data(ubIonosphere)
n<-ncol(ubIonosphere)
output<-ubIonosphere$Class
input<-ubIonosphere[,-n]

data<-ubTomek(X=input, Y= output)
newData<-cbind(data$X, data$Y)

ubUnder Under-sampling

Description

The function removes randomly some instances from the majority (negative) class and keeps all
instances in the minority (positive) class in order to obtain a more balanced dataset. It allows two
ways to perform undersampling: i) by setting the percentage of positives wanted after undersam-
pling (percPos method), ii) by setting the sampling rate on the negatives, (percUnder method). For
percPos, "perc"has to be (N.1/N * 100) <= perc <= 50, where N.1 is the number of positive and
N the total number of instances. For percUnder, "perc"has to be (N.1/N.0 * 100) <= perc <= 100,
where N.1 is the number of positive and N.0 the number of negative instances.

Usage

ubUnder(X, Y, perc = 50, method = "percPos", w = NULL)

Arguments

X the input variables of the unbalanced dataset.

Y the response variable of the unbalanced dataset. It must be a binary factor where
the majority class is coded as 0 and the minority as 1.

perc percentage of sampling.

method method to perform under sampling ("percPos", "percUnder").

w weights used for sampling the majority class, if NULL all majority instances are
sampled with equal weights

Value

The function returns a list:

X input variables

Y response variable

id.rm index of instances removed

ubUnder 17

See Also

ubBalance

Examples

library(unbalanced)
data(ubIonosphere)
n<-ncol(ubIonosphere)
output<-ubIonosphere$Class
input<-ubIonosphere[,-n]

data<-ubUnder(X=input, Y= output, perc = 40, method = "percPos")
newData<-cbind(data$X, data$Y)

Index

∗Topic datasets
ubIonosphere, 7

∗Topic unbalanced datasets,
imbalanced learning

unbalanced-package, 2

ubBalance, 3, 3, 5, 6, 8, 10–12, 14, 15, 17
ubCNN, 4, 5, 12
ubENN, 4, 6, 12
ubIonosphere, 7
ubNCL, 4, 8, 12
ubOSS, 4, 9, 12
ubOver, 4, 10, 12
ubRacing, 3, 4, 11
ubSMOTE, 4, 12, 13, 15
ubSmoteExs, 14
ubTomek, 4, 12, 15
ubUnder, 4, 12, 16
unbalanced (unbalanced-package), 2
unbalanced-package, 2

18

	unbalanced-package
	ubBalance
	ubCNN
	ubENN
	ubIonosphere
	ubNCL
	ubOSS
	ubOver
	ubRacing
	ubSMOTE
	ubSmoteExs
	ubTomek
	ubUnder
	Index

