## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) library(ape) library(PCMBase) FLAGSuggestsAvailable <- PCMBase::RequireSuggestedPackages() options(rmarkdown.html_vignette.check_title = FALSE) ## ----------------------------------------------------------------------------- PCMParentClasses.BM_drift <- function(model) { c("GaussianPCM", "PCM") } ## ----------------------------------------------------------------------------- PCMDescribe.BM_drift <- function(model, ...) { "Brownian motion model with drift" } ## ----------------------------------------------------------------------------- PCMCond.BM_drift <- function( tree, model, r = 1, metaI = PCMInfo(NULL, tree, model, verbose = verbose), verbose=FALSE) { Sigma_x <- if(is.Global(model$Sigma_x)){as.matrix(model$Sigma_x)} else{as.matrix(model$Sigma_x[,, r])} Sigma <- Sigma_x %*% t(Sigma_x) if(!is.null(model$Sigmae_x)) { Sigmae_x <- if(is.Global(model$Sigmae_x)){as.matrix(model$Sigmae_x)} else{as.matrix(model$Sigmae_x[,,r])} Sigmae <- Sigmae_x %*% t(Sigmae_x) } else { Sigmae <- NULL } if(!is.null(model$h_drift)) { h_drift <- if(is.Global(model$h_drift)) as.vector(model$h_drift) else model$h_drift[, r] }else{ h_drift <- rep(0,nrow(Sigma_x)) } V <- PCMCondVOU(matrix(0, nrow(Sigma), ncol(Sigma)), Sigma, Sigmae) omega <- function(t, edgeIndex, metaI) { t*h_drift } Phi <- function(t, edgeIndex, metaI, e_Ht = NULL) { diag(nrow(Sigma)) } list(omega = omega, Phi = Phi, V = V) } ## ----------------------------------------------------------------------------- PCMDescribeParameters.BM_drift <- function(model, ...) { list( X0 = "trait values at the root", h_drift = "drift vector modifying the expectation", Sigma_x = "Upper triangular factor of the unit-time variance rate", Sigmae_x = "Upper triangular factor of the non-heritable variance or the variance of the measurement error") } ## ----------------------------------------------------------------------------- PCMListParameterizations.BM_drift <- function(model, ...) { list( X0 = list( c("VectorParameter", "_Global"), c("VectorParameter", "_Fixed", "_Global"), c("VectorParameter", "_AllEqual", "_Global"), c("VectorParameter", "_Omitted")), h_drift = list( c("VectorParameter"), c("VectorParameter", "_Fixed"), c("VectorParameter", "_AllEqual"), c("VectorParameter", "_Omitted")), Sigma_x = list( c("MatrixParameter", "_UpperTriangularWithDiagonal", "_WithNonNegativeDiagonal"), c("MatrixParameter", "_Diagonal", "_WithNonNegativeDiagonal"), c("MatrixParameter", "_ScalarDiagonal", "_WithNonNegativeDiagonal")), Sigmae_x = list( c("MatrixParameter", "_UpperTriangularWithDiagonal", "_WithNonNegativeDiagonal"), c("MatrixParameter", "_Diagonal", "_WithNonNegativeDiagonal"), c("MatrixParameter", "_ScalarDiagonal", "_WithNonNegativeDiagonal"), c("MatrixParameter", "_UpperTriangularWithDiagonal", "_WithNonNegativeDiagonal", "_Global"), c("MatrixParameter", "_Diagonal", "_WithNonNegativeDiagonal", "_Global"), c("MatrixParameter", "_ScalarDiagonal", "_WithNonNegativeDiagonal", "_Global"), c("MatrixParameter", "_Omitted")) ) } ## ----------------------------------------------------------------------------- PCMListDefaultParameterizations.BM_drift <- function(model, ...) { list( X0 = list( c("VectorParameter", "_Global"), c("VectorParameter", "_Omitted") ), h_drift = list( c("VectorParameter")), Sigma_x = list( c("MatrixParameter", "_UpperTriangularWithDiagonal", "_WithNonNegativeDiagonal"), c("MatrixParameter", "_Diagonal", "_WithNonNegativeDiagonal"), c("MatrixParameter", "_ScalarDiagonal", "_WithNonNegativeDiagonal") ), Sigmae_x = list( c("MatrixParameter", "_Omitted")) ) } ## ----------------------------------------------------------------------------- PCMSpecify.BM_drift <- function(model, ...) { spec <- list( X0 = structure(0.0, class = c('VectorParameter', '_Global'), description = 'trait values at the root'), h_drift = structure(0.0, class = c('VectorParameter'), description = 'drift vector modifying the expectation'), Sigma_x = structure(0.0, class = c('MatrixParameter', '_UpperTriangularWithDiagonal', '_WithNonNegativeDiagonal'), description = 'Cholesky factor of the unit-time variance rate'), Sigmae_x = structure(0.0, class = c('MatrixParameter', '_UpperTriangularWithDiagonal', '_WithNonNegativeDiagonal'), description = 'Upper triangular factor of the non-heritable variance or the variance of the measurement error')) attributes(spec) <- attributes(model) if(is.null(names(spec))) names(spec) <- c('X0', 'h_drift', 'Sigma_x', 'Sigmae_x') if(any(sapply(spec, is.Transformable))) class(spec) <- c(class(spec), '_Transformable') spec } ## ----eval=FLAGSuggestsAvailable----------------------------------------------- X0 <- c(5, 2, 1) ## root state ## in regime a traits evolve independently a.Sigma_x <- rbind(c(1.6, 0.0, 0.0),c(0.0, 2.4, 0.0),c(0.0, 0.0, 2.0)) ## no jumps at the end of a branch a.Sigmae_x <- rbind(c(0.0, 0.0, 0.0),c(0.0, 0.0, 0.0),c(0.0, 0.0, 0.0)) a.h_drift<-c(4, 5, 6) ## in regime b evolution is correlated b.Sigma_x <- rbind(c(1.6, 0.3, 0.3), c(0.0, 0.3, 0.4),c(0.0, 0.0, 2.0)) ## no jumps at the end of a branch b.Sigmae_x <- rbind(c(0.0, 0.0, 0.0),c(0.0, 0.0, 0.0),c(0.0, 0.0, 0.0)) b.h_drift<-c(1, 2, 3) Sigma_x <- PCMParamBindRegimeParams(a = a.Sigma_x, b = b.Sigma_x) Sigmae_x <- PCMParamBindRegimeParams(a = a.Sigmae_x, b = b.Sigmae_x) h_drift <- PCMParamBindRegimeParams(a = a.h_drift, b = b.h_drift) PCMBase_model_BM_drift <- PCM("BM_drift", k = 3, regimes = c("a", "b"), params = list(X0 = X0,h_drift = h_drift[,,drop=FALSE], Sigma_x = Sigma_x[,,,drop=FALSE],Sigmae_x = Sigmae_x[,,,drop=FALSE])) ## ----eval=FLAGSuggestsAvailable----------------------------------------------- # make results reproducible set.seed(2, kind = "Mersenne-Twister", normal.kind = "Inversion") # number of regimes R <- 2 # number of extant tips N <- 100 tree.a <- PCMTree(rtree(n=N)) PCMTreeSetLabels(tree.a) PCMTreeSetPartRegimes(tree.a, part.regime = c(`101` = "a"), setPartition = TRUE) lstDesc <- PCMTreeListDescendants(tree.a) splitNode <- names(lstDesc)[which(sapply(lstDesc, length) > N/2 & sapply(lstDesc, length) < 2*N/3)][1] tree.ab <- PCMTreeInsertSingletons( tree.a, nodes = as.integer(splitNode), positions = PCMTreeGetBranchLength(tree.a, as.integer(splitNode))/2) PCMTreeSetPartRegimes( tree.ab, part.regime = structure(c("a", "b"), names = as.character(c(N+1, splitNode))), setPartition = TRUE) palette <- PCMColorPalette(2, c("a", "b")) # Plot the tree with branches colored according to the regimes. # The following code works correctly only if the ggtree package is installed, # which is not on CRAN. plTree <- PCMTreePlot(tree.ab) if(requireNamespace("ggtree")) { plTree <- plTree + ggtree::geom_nodelab(size = 2) } plTree ## ---- eval=FLAGSuggestsAvailable---------------------------------------------- mData<-PCMSim(tree.ab, PCMBase_model_BM_drift, X0)[,1:N] ## we only want the tip data ## NOTE that observations from different species are in the columns NOT in the rows as ## in other software ## ---- eval=FLAGSuggestsAvailable---------------------------------------------- log_lik<- PCMLik(mData, tree.ab, PCMBase_model_BM_drift) print(log_lik[1]) ## we just want to print the log-likelihood without the attributes ## ---- eval=FLAGSuggestsAvailable---------------------------------------------- ## create an vector of appropriate length to store the vectorized model parameters v_param <- double(PCMParamCount(PCMBase_model_BM_drift)) # load the current model parameters into param PCMParamLoadOrStore(PCMBase_model_BM_drift, v_param, offset=0, load=FALSE) print(v_param) ## now create a likelihood function for the particular model and observed data likFun <- PCMCreateLikelihood(mData, tree.ab, PCMBase_model_BM_drift) log_lik_from_likFun<-likFun(v_param) print(log_lik_from_likFun[1]) print(log_lik_from_likFun[1]==log_lik[1]) # modify slightly the model parameters v_param_2 <- jitter(v_param) print(v_param_2) # set the new parameter vector PCMBase_model_BM_drift_2<-PCMBase_model_BM_drift PCMParamLoadOrStore(PCMBase_model_BM_drift_2, v_param_2, offset = 0, load=TRUE) print(PCMBase_model_BM_drift_2) log_lik_from_likFun_2<-likFun(v_param_2) print(log_lik_from_likFun_2[1])