## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) options(digits = 3) ## ----include=FALSE------------------------------------------------------------ library(AnthropMMD) ## ----eval=FALSE, include=TRUE------------------------------------------------- # start_mmd() ## ----rows.print=8------------------------------------------------------------- data(toyMMD) head(toyMMD) ## ----------------------------------------------------------------------------- str(toyMMD) ## ----------------------------------------------------------------------------- tab <- binary_to_table(toyMMD, relative = TRUE) tab ## ----------------------------------------------------------------------------- data(absolute_freqs) print(absolute_freqs) ## ----------------------------------------------------------------------------- tab <- table_relfreq(absolute_freqs) print(tab) ## ----------------------------------------------------------------------------- tab_selected <- select_traits(tab, k = 10, strategy = "keepFisher") tab_selected$filtered ## ----------------------------------------------------------------------------- mmd.result <- mmd(tab_selected$filtered, angular = "Anscombe") mmd.result ## ----------------------------------------------------------------------------- par(cex = 0.8) plot(x = mmd.result, method = "interval", gof = TRUE, axes = TRUE, xlim = c(-1.2, 0.75)) ## ----------------------------------------------------------------------------- library(cluster) par(cex = 0.8) plot(agnes(mmd.result$MMDSym), which.plots = 2, main = "Dendrogram of MMD dissimilarities") ## ----------------------------------------------------------------------------- ## Load the example data once again: data(toyMMD) ## Compute MMD among bootstrapped samples: set.seed(2023) # set seed for reproducibility resboot <- mmd_boot( data = toyMMD, B = 50, # number of bootstrap samples angular = "Anscombe", strategy = "keepFisher", # strategy for trait selection k = 10 # minimal number of observations required per trait ) ## ----------------------------------------------------------------------------- ## MDS plot for bootstrapped samples: plot( x = resboot, method = "interval", # algorithm used for MDS computation level = 0.95, # confidence level for the contour lines gof = TRUE # display goodness of fit statistic )