\catcode\@=11 \input pdfmsym \pdfmsymsetscalefactor{10} \let\@xp=\expandafter \font\scten = cmcsc10 \def\fakebold#1{\pdf@literal{2 Tr .2 w}#1\pdf@literal{0 Tr 1 w}} \def\scalebox[#1]#2{{\setbox0=\hbox{#2}\hbox to#1\wd0{\pdf@literal{q #1 0 0 #1 0 0 cm}\rlap{#2}\pdf@literal{Q}\hfil}}} \def\begincenter{\bgroup\leftskip=0pt plus 1fill \rightskip=\leftskip} \def\endcenter{\par\egroup} \def\fbox#1{\vbox{\hrule\hbox{\vrule$#1$\vrule}\hrule}} \def\flip#1{{\setbox0=\hbox{#1}\kern\wd0\pdf@literal{q -1 0 0 1 0 0 cm}\rlap{#1}\pdf@literal{Q}}} \font\sevenrm = cmr7 \def\MatheX{Math\kern-.1ex\lower .6ex\hbox {E}\kern -.125emX} \def\xetex{X\kern-.125em\lower.5ex\hbox{\flip{E}}\kern-.1667em\TeX} \def\LaTeX{L\kern-.36em{\setbox0=\hbox{T}\vbox to\ht0{\hbox{\sevenrm A}\vss}}\kern-.15em\TeX} \def\fontuse{\afterassignment\@@ \font\@@} \def\scalefont{\fontuse \curr@font scaled } %\def\title#1{\leavevmode\vskip.1\vsize\centerline{\fontuse cmcsc10 scaled 5000 \fakebold{#1}}\bigskip} \def\title#1{\leavevmode\vskip.1\vsize\centerline{\scalebox[8]{\fakebold{#1}}}\bigskip} \newcount\c@section \newcount\c@subsection \def\section#1{\bigskip\advance\c@section by 1 \c@subsection=0 \hbox{\fontuse cmbx10 scaled 2000 \the\c@section. #1}\par\bigskip} \def\subsection#1{\medskip\advance\c@subsection by 1 \hbox{\fontuse cmbx10 scaled 1500 \the\c@section.\the\c@subsection. #1}\par\medskip} \chardef\fslash=\/ {\catcode\^^M=\active% \gdef\begincode{% \bgroup\everypar={}% \medskip% \setbox0=\vbox\bgroup% \global\dimen69=0pt% \tt% \catcode\^^M=\active% \def^^M{\egroup\ifnum\wd1>\dimen69 \global\dimen69=\wd1\fi\copy1\setbox1=\hbox\bgroup}% \catcode\ =\active% \catcode\{=12% \catcode\}=12% \catcode\/=0% \catcode\$=12% \catcode\\=12% \catcode\#=12% \catcode\%=12 \setbox1=\hbox\bgroup}} \def\endcode{% \egroup\egroup% \hfil\hbox to \dimen69{\box0}\hfil\par% \medskip% %\let\@par=\par% \egroup% } \def\icode{\bgroup\tt% \catcode\ =\active% \catcode\/=0% \catcode\{=12% \catcode\}=12% \catcode\$=12% \catcode\\=12% } \def\eicode{\egroup} {\catcode\<=\active \gdef\macrousage{\bgroup\setbox0=\hbox\bgroup\tt% \catcode\ =\active% \catcode\/=0% \catcode\{=12% \catcode\}=12% \catcode\$=12% \catcode\\=12% \catcode\<=\active% \def<##1>{$\langle${\it ##1}$\rangle}% }} \def\emacrousage{\egroup\par\smallskip\centerline{\box0}\egroup\par\smallskip} \def\emacrousageB{\egroup\box0\egroup} \def\macroname#1{{\tt\string#1}} \chardef\lbrace="7B \chardef\rbrace="7D \def\macroexp#1{\par\smallskip\bgroup\leftskip=1cm\leavevmode\kern-1cm\macrousage \scantokens{#1}\emacrousageB:} \def\emacroexp{\par\egroup\smallskip} \def\showcase#1#2{{\openup3\jot\halign{\tt\hskip 1cm\string##\hfil&\quad\hfil##\cr \omit\tt\string#1: &\displaystyle#1\cr\noalign{\kern3pt\hrule\kern3pt} \displaystyle &\displaystyle #2$\cr \textstyle &$\textstyle #2$\cr \scriptstyle &$\scriptstyle #2$\cr \scriptscriptstyle &$\scriptscriptstyle #2\cr} }} \def\showcasevecc#1#2#3{\hbox to\hsize{\hss\vbox{\tabskip=5pt\openup3\jot% \halign{\tt\hskip 1cm\string##\tabskip=0pt\hfil&&\quad##\hfil&\quad\hfil##\tabskip=5pt\cr \omit\tt\string#1: & \tt\string#1 & \tt\expandafter\string\csname short\m@strip#1\endcsname% \cr\noalign{\kern3pt\hrule\kern3pt} \displaystyle &\displaystyle #1{#2}$&$\displaystyle \csname short\m@strip#1\endcsname{#3}$\cr \textstyle &$\textstyle #1{#2}$&$\textstyle \csname short\m@strip#1\endcsname{#3}$\cr \scriptstyle &$\scriptstyle #1{#2}$&$\scriptstyle \csname short\m@strip#1\endcsname{#3}$\cr \scriptscriptstyle &$\scriptscriptstyle #1{#2}$&$\scriptscriptstyle \csname short\m@strip#1\endcsname{#3}\cr} }\hss}\bigskip} \def\showcaseveccs#1#2#3#4{\showcasevecc{#1}{#3}{#4}\showcasevecc{#2}{#3}{#4}} \def\showcasearrow#1#2#3#4{\hbox to\hsize{\hss\vbox{\tabskip=0pt\openup3\jot \halign{\tt\hskip 1cm\string##\tabskip=0pt\hfil&\quad##\hfil&\quad\hfil##\hfil\quad&\quad\hfil##\tabskip=5pt\cr \omit\tt\string#1: & \tt\string#1 & \tt\expandafter\string\csname long\m@strip#1\endcsname & \tt\expandafter\string\csname x\m@strip#1\endcsname\cr\noalign{\kern3pt\hrule\kern3pt} \displaystyle &\displaystyle #2$&$\displaystyle #3$&$\displaystyle #4$\cr \textstyle &$\textstyle #2$&$\textstyle #3$&$\textstyle #4$\cr \scriptstyle &$\scriptstyle #2$&$\scriptstyle #3$&$\scriptstyle #4$\cr \scriptscriptstyle &$\scriptscriptstyle #2$&$\scriptscriptstyle #3$&$\scriptscriptstyle #4\cr} }\hss}\bigskip} \def\showcaseaccent#1#2{{\openup3\jot\halign{\tt\hskip 1cm\string##\hfil&\quad\hfil##\cr \omit\tt\string#1: & \cr\noalign{\kern3pt\hrule\kern3pt} \displaystyle &\displaystyle #2$\cr \textstyle &$\textstyle #2$\cr \scriptstyle &$\scriptstyle #2$\cr \scriptscriptstyle &$\scriptscriptstyle #2\cr} }} \parindent=0pt \parskip=3pt \hoffset=\dimexpr 2cm - 1in \relax \advance\hsize by -2\hoffset \voffset=2\hoffset \advance\vsize by -2\voffset \nopagenumbers \title{\pdfMsym} \unskip {\setbox0=\hbox{\fakebold{\pdfMsym}}\centerline{\hbox to8\wd0{\hfil\it version \pdfMsymversion}}} \centerline{\it S. Lurp} \centerline{\tt slurper04@gmail.com} \centerline{\it\pdfMsymupdate} \bigskip \hbox to \hsize{\hfil\vbox{\hsize=.7\hsize \hrule \smallskip \begincenter The \pdfMsym{} package (the {\scten pdf} Math Symbols package) was created as an extension to the math macros provided by \TeX{} and \LaTeX{}. It provides more obscure symbols not found in popular preexisting and reimpliments macros which were viewed as flawed. A big part of the package was implemented through \macroname\pdfliteral s and other {\scten pdf} primitives. So the \pdfMsym{} package is intended for use with {\scten pdf}\TeX, Lua\TeX, \xetex, and their \LaTeX{} counterparts. Unfortunately, some macros are not supported by \xetex. \endcenter \smallskip \hrule }\hfil} \vfill\eject \footline={\hfil\folio\hfil} \section{An Introduction to \scalebox[2]{\fakebold\pdfMsym}} The main motivator for creating \pdfMsym{} was \TeX's poor implementation of the \macroname\overrightarrow{} macro which many times yields unsavory results. For example \icode \overrightarrow{\rm ABC}/eicode{} yields: $$\overrightarrow{\rm ABC}$$ As you can see, the arrow overlaps with the {\tt ABC} which is undesirable. This can be fixed by altering the \macroname\rightarrow{} macro, but I decided to make a more versatile alternative: the \pdfMsym{} alternative \macroname\vecc{}: $$\vecc{\hbox{ABC}}$$ Along with a few other features, \pdfMsym{} provides a simple interface for creating your own style of arrows. \pdfMsym{} requires the current font size in order to properly scale its symbols, which must be provided after {\tt\string\input}ing {\tt pdfmsym.tex}. This can be done with the \macroname\pdfmsymsetscalefactor{} macro. If your font is 12pt then you can load \pdfMsym{} like so: \begincode \input pdfmsym \pdfmsymsetscalefactor{12} /endcode\par It is {\it imperative} that you set the scale factor after loading {\tt pdfmsym} as otherwise almost none of the macros will work. \section{The Predefined Symbols} This section will simply be an exhaustive list of all the predefined symbols \pdfMsym{} provides. \subsection{Math Symbols} {\tabskip=10pt plus 5pt minus 5pt\openup3\jot\halign to \hsize{{\hsize=.45\hsize#}\hfil&\hfil{\hsize=.45\hsize#}\cr \vbox{\showcase\dwedge{A\dwedge B}} & \vbox{\showcase\bigdwedge{A\dwedge\bigdwedge_{n=1}^N B_n}}\cr \vbox{\showcase\circwedge{A\circwedge B}} & \vbox{\showcase\bigcircwedge{A\circwedge\bigcircwedge_{k=1}^n A_k}}\cr \noalign{\vfill\eject} \vbox{\showcase\dcup{A\dcup B}} & \vbox{\showcase\bigdcup{A\dcup\bigdcup_{n=1}^N B_n}}\cr \vbox{\showcase\aint{f(x) + \aint_a^b g(x)\, dx}} & \vbox{\showcase\divs{n\divs m}}\cr \vbox{\showcase\ndivs{n\ndivs m}} & \vbox{\showcase\bigforall{P: \bigforall_{x\in X}Q(x)}}\cr \vbox{\showcase\bigexists{P: \bigexists_{x\in X}Q(x)}} & \cr}} \bigskip \pdfMsym{} also provides arbitrary length closed loop integrals via \macrousage \oiNint{} /emacrousage which creates anN$dimensional closed loop integral. Similarly \macroname\biNint{} creates a similar integral sign but rectangular instead of elliptical. Finally there is also \macroname\iNint{} which simply creates multiple integrals (this may be desirable instead of manually doing so since it properly set limits both with \macroname\limits{} and \macroname\nolimits). \line{\hfil$\displaystyle\oiNint{5}_A^B\quad{\textstyle\oiNint{5}_A^B}\hfil\iNint{5}_{A}^{B}\quad{\textstyle\iNint{5}_A^B}\hfil\biNint{3}_{A}^{B}\quad{\textstyle\biNint{3}_A^B}$\hfil} Additionally, \macroname\lightning{} is provided as a textmode command and renders \lightning. \subsection{Vector Symbols} Each vector comes as a pair: the normal form and the short form. The normal form is meant to cover longer material while the short form covers shorter material. \bigskip \showcaseveccs\vecc\undervecc{\rm ABC}a \showcasevecc\lvecc{\rm ABC}a \showcasevecc\underlvecc{\rm ABC}a \showcaseveccs\straightvecc\understraightvecc{\rm ABC}a \vfill\eject \showcaseveccs\straightlvecc\understraightlvecc{\rm ABC}a \showcaseveccs\overrightharp\underrightharp{\rm ABC}a \showcaseveccs\overleftharp\underleftharp{\rm ABC}a \showcaseveccs\overleftrightvecc\underleftrightvecc{\rm ABC}a \showcaseveccs\overleftrightharp\underleftrightharp{\rm ABC}a \showcaseveccs\overrightleftharp\underrightleftharp{\rm ABC}a \unless\ifx\pdfxform\undefined The \macroname\constvec{} macro has the following usage: \macrousage \constvec{} /emacrousage And it centers the {\tt vector macro} above {\tt material} as if it had the same height as {\tt x}, cropping anything above that height. So for example \icode \constvec\vecc{abc}/eicode{} yields$\constvec\vecc{abc}. This macro cannot be used in \xetex. \fi \subsection{Arrow Symbols} Each arrow comes as a triplet: the normal form, the long form, and the extendable form. The extendable form is similar to \macroname\xrightarrow{} and friends, an extendable arrow has the following use: \macrousage \xarrow{}[] /emacrousage And creates an extended arrow to fit both the top and bottom material. \bigskip \showcasearrow\varrightarrow{A\varrightarrow B}{A\longvarrightarrow B}{A\xvarrightarrow{ABC}[abc] B} \showcasearrow\varleftarrow{A\varleftarrow B}{A\longvarleftarrow B}{A\xvarleftarrow{ABC}[abc] B} \showcasearrow\varrightharp{A\varrightharp B}{A\longvarrightharp B}{A\xvarrightharp{ABC}[abc] B} \showcasearrow\varleftharp{A\varleftharp B}{A\longvarleftharp B}{A\xvarleftharp{ABC}[abc] B} \showcasearrow\varleftrightarrow{A\varleftrightarrow B}{A\longvarleftrightarrow B}{A\xvarleftrightarrow{ABC}[abc] B} \showcasearrow\varleftrightharp{A\varleftrightharp B}{A\longvarleftrightharp B}{A\xvarleftrightharp{ABC}[abc] B} \showcasearrow\varrightleftharp{A\varrightleftharp B}{A\longvarrightleftharp B}{A\xvarrightleftharp{ABC}[abc] B} \showcasearrow\varmapsto{A\varmapsto B}{A\longvarmapsto B}{A\xvarmapsto{ABC}[abc] B} \showcasearrow\varmapsfrom{A\varmapsfrom B}{A\longvarmapsfrom B}{A\xvarmapsfrom{ABC}[abc] B} \showcasearrow\varuphookrightarrow{A\varuphookrightarrow B}{A\longvaruphookrightarrow B}{A\xvaruphookrightarrow{ABC}[abc] B} \showcasearrow\varuphookleftarrow{A\varuphookleftarrow B}{A\longvaruphookleftarrow B}{A\xvaruphookleftarrow{ABC}[abc] B} \showcasearrow\vardownhookrightarrow{A\vardownhookrightarrow B}{A\longvardownhookrightarrow B}{A\xvardownhookrightarrow{ABC}[abc] B} \showcasearrow\vardownhookleftarrow{A\vardownhookleftarrow B}{A\longvardownhookleftarrow B}{A\xvardownhookleftarrow{ABC}[abc] B} \showcasearrow\vardoublerightarrow{A\vardoublerightarrow B}{A\longvardoublerightarrow B}{A\xvardoublerightarrow{ABC}[abc] B} \showcasearrow\vardoubleleftarrow{A\vardoubleleftarrow B}{A\longvardoubleleftarrow B}{A\xvardoubleleftarrow{ABC}[abc] B} \showcasearrow\varcirclerightarrow{A\varcirclerightarrow B}{A\longvarcirclerightarrow B}{A\xvarcirclerightarrow{ABC}[abc] B} \showcasearrow\varcircleleftarrow{A\varcircleleftarrow B}{A\longvarcircleleftarrow B}{A\xvarcircleleftarrow{ABC}[abc] B} As well as single-stroke arrows, \pdfMsym{} provides double stroke arrows which are analogous to single stroke arrows and have an identical usage. \bigskip \showcasearrow\varRightarrow{A\varRightarrow B}{A\longvarRightarrow B}{A\xvarRightarrow{ABC}[abc] B} \showcasearrow\varLeftarrow{A\varLeftarrow B}{A\longvarLeftarrow B}{A\xvarLeftarrow{ABC}[abc] B} \showcasearrow\varCirclerightarrow{A\varCirclerightarrow B}{A\longvarCirclerightarrow B}{A\xvarCirclerightarrow{ABC}[abc] B} \showcasearrow\varCircleleftarrow{A\varCircleleftarrow B}{A\longvarCircleleftarrow B}{A\xvarCircleleftarrow{ABC}[abc] B} \showcasearrow\varSquarerightarrow{A\varSquarerightarrow B}{A\longvarSquarerightarrow B}{A\xvarSquarerightarrow{ABC}[abc] B} \showcasearrow\varSquareleftarrow{A\varSquareleftarrow B}{A\longvarSquareleftarrow B}{A\xvarSquareleftarrow{ABC}[abc] B} \showcasearrow\varRibbonrightarrow{A\varRibbonrightarrow B}{A\longvarRibbonrightarrow B}{A\xvarRibbonrightarrow{ABC}[abc] B} \showcasearrow\varRibbonleftarrow{A\varRibbonleftarrow B}{A\longvarRibbonleftarrow B}{A\xvarRibbonleftarrow{ABC}[abc] B} \showcasearrow\squaredarrow{A\squaredarrow B}{A\longsquaredarrow B}{A\xsquaredarrow{ABC}[abc] B} \showcasearrow\roundedarrow{A\roundedarrow B}{A\longroundedarrow B}{A\xroundedarrow{ABC}[abc] B} \showcasearrow\varrightarrows{A\varrightarrows B}{A\longvarrightarrows B}{A\xvarrightarrows{ABC}[abc] B} \showcasearrow\varleftarrows{A\varleftarrows B}{A\longvarleftarrows B}{A\xvarleftarrows{ABC}[abc] B} \showcasearrow\varrightleftarrows{A\varrightleftarrows B}{A\longvarrightleftarrows B}{A\xvarrightleftarrows{ABC}[abc] B} \showcasearrow\varleftrightarrows{A\varleftrightarrows B}{A\longvarleftrightarrows B}{A\xvarleftrightarrows{ABC}[abc] B} \pdfMsym{} doesn't stop at two, but it also provides triple stroke arrows which have the same usage as the other two types of arrows: \bigskip \showcasearrow\varRrightarrow{A\varRrightarrow B}{A\longvarRrightarrow B}{A\xvarRrightarrow{ABC}[abc] B} \showcasearrow\varLleftarrow{A\varLleftarrow B}{A\longvarLleftarrow B}{A\xvarLleftarrow{ABC}[abc] B} \showcasearrow\varLleftRrightarrow{A\varLleftRrightarrow B}{A\longvarLleftRrightarrow B}{A\xvarLleftRrightarrow{ABC}[abc] B} \vfill\eject \subsection{Wide Accents} Wide accents provide variants to the commonly used accents like \macroname\widehat{} and \macroname\widetilde. Unlike these accents, \pdfMsym's wide accents can grow arbitrarily large. \bigskip {\tabskip=20pt plus 10pt minus 5pt\halign{{\hsize=.45\hsize#}\hfil&\hfil{\hsize=.45\hsize#}\cr \vbox{\showcaseaccent\varwidehat{\varwidehat{ABC}+D}} & \vbox{\showcaseaccent\varwidecheck{\varwidecheck{ABC}+D}}\cr}} \bigskip \hbox to\hsize{\hfil\vbox{\tabskip=20pt plus 10pt minus 5pt\showcaseaccent\varwidetilde{\varwidetilde{ABC}+D}}\hfil} \unless\ifx\pdfxform\undefined \subsection{Extendable Operators} Extendible operators extend to the width of the material in their limits. These operators should only be used in display mode, since they use the display modes of the operators. They are \macroname\suum{} and \macroname\prood{}: $$\suum_{\hbox{abcdef}}^{\hbox{ABCDEF}} \qquad \prood_{\hbox{abcdef}}^{\hbox{ABCDEF}}$$ These are not available in \xetex. \fi \vfill\penalty-10000 \section{Defining Your Own Symbols} The following section outlines the interface which \pdfMsym{} utilizes to create its symbols. Some of the macros require knowledge of {\scten pdf}'s native graphics operators, which is not explained here. For resources on that, consult Adobe's {\scten pdf} Reference, chapter4$(Graphics). \subsection{The Macros} \macroexp{\@linehead@type{}{}} This creates a linehead'' which is used to cap lines, like \macroname\@rarrow{} ($\@rarrow{.4}{2.5}). {\it pdf code} is the actual code used to draw the symbol, and it should be noted that all necessary transformations to the linehead are done by \macroname\@linehead@type{} and should not be included in the code. This includes the setting of the width and transforming the coordinate system. The {\it width} is the width of the drawing of the {\it pdf code}. This macro actually accepts more parameters, but they're used internally and therefore aren't necessary to explain. Therefore the only use this macro should be for is defining line heads. For example, the definition of \macroname\@rarrow{} is: \begincode \def\@rarrow {\@linehead@type{0 0 m 2 0 l 1 0 0 1 0 1.5 c 2 0 m 1 0 0 -1 0 -1.5 c S}{2}} /endcode The following is a table of all the predefined lineheads (scaled for visibility): \def\fsclh#1{\macroname#1{.4}{1.5}} \def\sclh#1{&\macroname#1{.4}{1.5}} \quitvmode\hbox to\dimexpr\hsize-\leftskip\relax{\hfil\vbox{\pdfmsymsetscalefactor{20}\everycr{\noalign{\hrule}} \halign{\vrule\kern.1cm\strut#\hfil\tabskip=.25cm&\hfil#\hfil\kern.1cm\vrule\tabskip=0pt&&\kern.1cm#\hfil\tabskip=.25cm&\hfil#\hfil\kern.1cm\vrule\tabskip=0pt\cr \fsclh\@rarrow \sclh\@larrow \sclh\@rharp \sclh\@lharp\cr \fsclh\@rdharp \sclh\@ldharp \sclh\@linecap \sclh\@mapcap\cr \fsclh\@mapsfromcap \sclh\@rsarrow \sclh\@lsarrow \sclh\@backuphook\cr \fsclh\@frontuphook \sclh\@backdownhook \sclh\@frontdownhook \sclh\@doublerarrow\cr \fsclh\@doublelarrow \sclh\@Rarrow \sclh\@Larrow \sclh\@Linecap\cr \fsclh\@Rightcirclecap \sclh\@Leftcirclecap \sclh\@Rightsquarecap \sclh\@Leftsquarecap\cr \omit\vrule height10pt depth4pt\kern.1cm\fsclh\@Rightribboncap \sclh\@Leftribboncap \sclh\@BigLinecap \sclh\@Rightarrows\cr \omit\vrule height10pt depth4pt\kern.1cm\fsclh\@Leftarrows \sclh\@Rightunderarrow \sclh\@Leftunderarrow \sclh\@Rightoverarrow\cr \omit\vrule height10pt depth4pt\kern.1cm\fsclh\@Leftoverarrow \sclh\@TripleLinecap \sclh\@TripleRarrow \sclh\@TripleLarrow \cr }}\hfil} \emacroexp \macroexp{\@vecc@def{}} This creates a vector macro, like \macroname\vecc. This creates both the normal and short variations of the vector. For example, the definition of the {\tt vecc} vectors is: \begincode \@vecc@def{vecc}\@linecap\@rarrow /endcode \emacroexp \macroexp{\@undervecc@def{}} This creates an under-vector macro, like \macroname\undervecc. This creates both the normal and short variations of the vector. For example, the definition of the {\tt undervecc} vectors is: \begincode \@undervecc@def{undervecc}\@linecap\@rarrow /endcode \emacroexp \macroexp{\@arrow@def{}} This creates an arrow macro, like \macroname\varrightarrow. This creates the normal, long, and extendable versions of the arrow. For example, the definition of the {\it varrightarrow} vectors is: \begincode \@arrow@def{varrightarrow}\@linecap\@rarrow /endcode \emacroexp \macroexp{\@Arrow@def{}{}} This creates a double-stroked arrow, like \macroname\varRightarrow. This macro creates the normal, long, and extendable versions of the arrow. {\it height displacement} is half the difference in height between the two strokes (the difference of height between one stroke and the center). For the default double stroke linecaps \pdfMsym{} defines, this should be1$. For example, the definition of \macroname\varRightarrow{} is: \begincode \@Arrow@def{varRightarrow}\@Linecap\@Rarrow{1} /endcode \emacroexp \macroexp{\@multi@Arrow@def{}{}{}} This creates an arrow with any number of strokes according to {\tt number strokes}. Doing \macroname\@multi@Arrow@def{} with$1$or$2$strokes is equivalent to \macroname\@arrow@def{} or \macroname\@Arrow@def{}, respectively. Similar to above, {\it height displacement} is half the difference between two adjacent strokes. For example, the definition of \macroname\varRrightarrow{} is: \begincode \@multi@Arrow@def{varRrightarrow}{3}\@TripleLinecap\@TripleRarrow{1} /endcode \emacroexp \macroexp{\@arrow@type{}} This draws a single-stroke arrow whose caps are {\it left cap} and {\it right cap} respectively and whose length is {\tt length}. This is used by \macroname\@arrow@def{}, for example \macroname\varrightarrow{} is defined to be \begincode \@arrow@type\@linecap\@rarrow{\arrow@len} /endcode \emacroexp \macroexp{\@Arrow@type{}{}} This draws a double-stroke arrow, the parameters have the same usage as in \macroname\@Arrow@def. This is used by \macroname\@Arrow@def, for example \macroname\varRightarrow{} is defined to be: \begincode \@Arrow@type\@Linecap\@Rarrow{\Arrow@len}{1} /endcode \emacroexp \macroexp{\@multi@Arrow@type{}{}{}} This draws an \penalty-10 arrow with a specified number of strokes. The usage of the parameters is identical to theirs in\hfill\penalty-1000 \macroname\@multi@Arrow@def. This is used by \macroname\@multi@Arrow@def, for example \macroname\varRrightarrow{} is defined to be: \message{MEANING: \meaning\varRrightarrow} \begincode \@multi@Arrow@type{3}\@TripleLinecap\@TripleRarrow{\Arrow@len}{1.5} /endcode \emacroexp \macroexp{\@wide@accent{}} This creates a wide accent, like \macroname\varwidecheck. The width of the drawing by the {\it pdf code} should be$1\$, and it should be filled not stroked (since the accent is transformed to stretch over the material beneath it). Again this macro should only be used to define wide accents. For example, the definition of \macroname\varwidecheck{} is: \begincode \def\varwidecheck{\@wide@accent{0 1.3 m .5 -.4 l 1 1.3 l 1 1.6 l .5 .3 l 0 1.6 l f}} /endcode \emacroexp \macroexp{\pdf@drawing@macro{}{}{}{}{}{}} This creates a text mode symbol like \macroname\lightning. It is important that the {\it pdf code} fits inside the box created by {\it width, height,\/} and {\it depth} since the drawing is placed inside of an XForm and so anything outside the box will be cropped. The {\it horizontal skew} can be used to shift the symbol so that it fits horizontally inside the box. For example, the definition of \macroname\lightning{} is: \begincode \pdf@drawing@macro{lightning} % The lightning symbol is drawn upright {.86603 -.5 .5 .86603 0 0 cm % and rotated 30 degrees 1 J 1 j .6 w -3 10 m -3 4.133975 l 0 5.866025 l 0 0 l -1.125 1.5 l 0 0 l 1.125 1.5 l S} {4.2pt}{10.5pt}{.5pt}{.9pt} /endcode \emacroexp \macroexp{\pdf@drawing@math@macro{}{}{}{}{}{}