
Samba4 Status - April 2004

Andrew Tridgell
Samba Team



Major Features

● The basic goals of Samba4 are quite ambitious, 
but achievable:

● protocol completeness
● extreme testability
● non-POSIX backends
● fully asynchronous internals
● flexible process models
● auto-generated RPC infrastructure
● flexible database architecture



Samba 3.5 – half way to Samba4

● We plan on creating a Samba3.5 release in the 
next few months

● extract finished code from Samba4 now
● get team members used to the Samba4 structures and 

methods
● provide essential infrastructure for some new features
● only merge easily 'separable' parts of Samba4



Samba 3.5 – pieces to merge

● We plan on merging the following:
● the libcli/ SMB client library
● the IDL based RPC client library
● the ldb database
● the smbclient code
● the smbtorture test suite
● the schannel code
● some of the source directory structue



Protocol Completeness

● CIFS/SMB is a huge protocol, but is not infinite. 
● In previous versions of Samba we implemented 

new protocol elements “on demand”, only adding 
an element when we saw an application using it.

● In Samba4 the new attitude is “implement 
everything”



Old testing method

● The Samba project has previously developed 
testsuites of 3 main kinds:

● ad-hoc tests for a range of specific conditions
● full-coverage tests for a very small range of operations
● randomised testing for a very small range of operations

● This approach did work to some extent, but 
suffered from some major drawbacks:

● many parts of the protocol remained completely untested
● many fields untested within the tested parts of the protocol
● difficult to expand to be comprehensive



New approach: extreme testability

● The new testing system in Samba4 is based on a 
few basic components:

● a comprehensive raw client library
● individual tests covering every field of every call
● a randomised dual-server tester with broad coverage
● a "CIFS on CIFS" storage backend for the Samba4 server

● These components work together to provide a 
testing capability far beyond what could be 
achieved with our earlier testsuites



CIFS Plugfest



Raw Client Library

● The heart of the new testing system is a 'raw' 
comprehensive client library. Unlike our previous 
client library this allows easy generation of all 
SMBs, with control over all fields in each request

● New features include:
● async interfaces
● oplock support
● no 'smarts' - send exactly what is asked for

● Note that it takes a lot code to use the new 
interface compared to the old one. The old 
interface is still available as a wrapper



C interface to raw library

int fnum = cli_open(cli, "\\test.dat", O_RDWR, DENY_READ);

NTSTATUS status;
union smb_open io;

io.generic.level = RAW_OPEN_OPENX;
io.openx.in.flags = OPENX_FLAGS_ADDITIONAL_INFO;
io.openx.in.open_mode = OPEN_MODE_ACCESS_RDWR;
io.openx.in.search_attrs = FILE_ATTRIBUTE_SYSTEM|FILE_ATTRIBUTE_HIDDEN;
io.openx.in.file_attrs = 0;
io.openx.in.write_time = 0;
io.openx.in.open_func = OPENX_OPEN_FUNC_OPEN;
io.openx.in.size = 0;
io.openx.in.timeout = 0;
io.openx.in.fname = "\\test.dat";

req = smb_raw_open_send(tree, &io);
status = smb_raw_open_recv(req, mem_ctx, &io);

Old interface:

New Interface:



CIFS Backend

● A new feature in Samba4 is the ability to define 
arbitrary storage backends at the 'raw' CIFS level

● A backend that has proved incredibly useful for 
testing is the 'CIFS' backend, that uses a remote 
CIFS server for all operations:

● uses the raw client library for remote server access
● ideal for testing core server infrastructure
● combined with the individual tests and gentest it allows the 

server side CIFS parsing to be tested in isolation



gentest

● gentest is the 'big gun' CIFS test program that I 
have wanted to build for many years. Basic 
features include:

● dual server, dual instance testing
● randomised, broad coverage request generation
● automatic backtracking for finding minimal request subset
● can cover all fields of all requests
● full async oplock testing



Dual Server Testing

● The basis of gentest is 'dual server testing', the 
same basic technique used in the 'locktest' 
program from earlier versions of Samba:

● The test program establishes two connections to each of 
two servers

● Random requests are then generated, with identical 
requests sent to the two servers

● At each step gentest compares every field of every 
response between the two servers

● When a response differs gentest uses backtracking to find 
the minimal subset of the requests sent so far that generates 
a difference in response



Backtracking

● When a difference is discovered between the two 
servers gentest goes into 'analyze' mode, using a 
backtracking technique to find the minimal subset 
of requests that produce a difference:

● successively smaller chunks of the request streams are 
blocked out

● If a difference is still reported when a chunk is blocked out 
then that chunk is not needed and can be discarded

● reconnects to the servers and wipes all files at each pass
● The final pattern of requests can be replayed for analysis 

with a network sniffer



Process Models

● Samba3 only supported a “one client, one fork” 
process model

● In Samba4 the process model is pluggable, 
allowing the model to match the environment and 
backend

● Three process model modules are currently 
available:

● 'single' - one process for all clients
● 'standard' - the old Samba3 model
● 'thread' - a pthread per client



pidl - autogenerated RPC

● In Samba4 we are finally moving to auto-
generated RPC code, using a new IDL compiler 
called “pidl”

● extended IDL syntax to support Microsoft “handwritten” 
RPC, including relative and subcontext RPC

● auto-generation of test suite support code makes test suite 
generation easy

● auto-generates both client and server code
● work in progress to auto-generated server backends using 

ldb API

● Over 100k lines of Samba3 code have been 
replaced with less than 10k lines in Samba4



ldb - a new database API

● A little known fact is that internally Samba is 
database driven, using the tdb “trivial” database

● In Samba4 we will use ldb
● a mid-point between LDAP and TDB
● allows for “no-schema” operation
● LDAP-like API
● can either use a TDB or LDAP backend
● very fast indexing
● supports LDAP search expressions

● ldb will be used for all persistant databases. tdb 
will be used for temporary databases



Active Directory and PDC

● Our aim is to make Samba4 be a full ADS 
domain controller, plus a full NT4 domain 
controller

● We will use auto-generated mappings from IDL 
to ldb to store directory information

● The work to make Samba4 a domain controller is 
only just beginning, but the basic infrastructure 
looks good



The move to UTF-16

● In Samba3 we finally moved to full UCS-2 
unicode support, greatly improving support for 
multi-byte languages

● For Samba4 we will move to UTF-16, to allow 
for support of those characters not in UCS-2.

● A new technique should mean that languages like 
Chinese and Japanese will actually be much 
faster than English in Samba4



Easier Install

● For Samba4 I want Samba to be much easier to 
install and configure

● builtin web configuration in smbd - no extra setup
● no base config file needed, just start daemon and use 

browser
● new GUI for SWAT, including functionality from current 

command line tools
● ldb+tdb means no messing about with LDAP setup



Current Status

● The effort to build Samba4 has so far taken 3 
people about 14 months

● RAW client library done
● test suite done
● NTVFS layer done
● CIFS backend done
● RPC/pidl infrastructure done
● ldb done

● To get this far we have dropped a great deal of 
fundamental functionality.



More Info

● So, you want to help? Good!
● Get the code from the svn.samba.org
● Join the samba-technical IRC channel and mailing list
● Not for the faint of heart! This is not production code yet
● See http://samba.org/ftp/samba/slides/samba4_sambaxp04.pdf for a 

copy of these slides

Questions?

This work represents the views of the author, and does not necessarily represent the views of IBM


