
Clustering Samba: Problems, Pitfalls 
and Possibilities

jra@samba.org

By Jeremy Allison

“Everyone talks about the weather, but no one does anything about it.”: Mark Twain



The ultimate goal...

� A clustered file server ideally has the following 
properties :

� All clients can connect to any server.

� A server can fail and clients are transparently 
reconnected to another server.

� All servers can serve out the same set of files.

� All file changes are immediately seen on all servers.

� Distributed filesystem.

� Ability to scale by adding more servers/disk backend.

� Appears as a single large system.





Why is this hard ?

� In a word – STATE !

� Both TCP state and the SMB state above it.

� SMB uses TCP connections, so active failover is 
not seriously considered.

� All current SMB clusters are failover solutions, they 
rely on the clients to reconnect.

� Servers must keep state about client connections.

� SMB keeps a lot of state.

� Every file open must be compared with other opens to 
check share modes.



Try starting from the front...

� To appear as a fileserver with one name and 
address, the incoming TCP streams from clients 
must be de-multiplexed at the SMB level and fed 
to different servers in the pool.

� First decision is to split all IPC$ connections and 
RPC calls to one server to handle printing and user 
lookup.

� RPC Printing handles are shared between different IPC$ 
sessions, very hard to split between servers.

� All other servers simply provide file service.

� Simpler problem to concentrate on.





De-multiplexing SMB requests.

� To de-multiplex SMB requests, knowlegde of the 
current VUID state must be held within the front-
facing “virtual” server.

� WinXP and above have changed semantics so that the 
 vuid, tid and fid must match for a successful 
operation (makes things simpler).

� SMB requests are sent by vuid to their associated 
server. This code doesn't exist yet (similar to 
Windows 2000 Terminal Server problem)

� May be simpler to start by exposing the server pool to 
the clients directly – saves the demultiplex step.



Now examine the back – the 
distributed filesystem.

� Many distributed filesystems exist for 
UNIX/Linux.

� Many of them can be adopted for the backend 
purpose, so long as awareness of SMB semantics is 
kept in mind (share modes, locking and oplock issues 
in particular).

� Common free software ones are :

� NFS, AFS, OpenGFS, Lustre

� The server pool can use any distributed filesystem 
backend if all SMB semantics are performed within 
this pool. 



Distributed filesystem restrictions.

� If the server pool only serves SMB, oplocks may 
be handled within the pool without backend 
filesystem support.

� If the server pool also serves NFS or other file 
protocols then their implementations must 
become oplock aware and interoperate with 
Samba.

� Otherwise, no oplocks – loss of performance by 
Windows clients.

� Protocol state must be shared across the pool.



Communication in the server pool.

� As most backend filesystems usually support 
POSIX semantics, it is hard to push the SMB state 
back into the filesystem.

� eg. POSIX locks are signed and have different 
semantics to SMB locks.

� Clearly, smbd processes in the server pool must 
communicate quickly.

� Non clustered Samba uses tdbs and a local loopback 
UDP protocol to pass this state info.

� Clustered smbd's must use something else.



Fast communication in the server 
pool.

� Using filesystem shared tdb's and distributed fcntl 
calls is (as tridge puts it) a w%&k solution. 

� A new fast interconnect must be used.

� Possibilities are a proprietary shared memory bus 
such as Myrinet or SCI (Scalable Coherent Interface) 
-which are very expensive.

� However, Gigabit ethernet cards are now $60, gigabit 
switches are $150......

� Bypassing TCP or UDP and using raw ethernet 
framing may be needed to get the interconnect speed.

� I have no data on the speed needed for this to work.



Samba modifications needed.

� Clustered Samba in the previous configuration 
needs to be modified to integrate with the fast 
interconnect.

� The operations on the locking database, the share 
mode database and the oplock notification code must 
all be modified to communicate over the fast 
interconnect.

� Failure semantics must be defined. Samba behaves 
the same way as Windows when oplock messages fail 
(allows the open regardless) but what about inter-
machine messages ?

� Do we use point to point (lock manager) or multicast?





A Simpler Solution

� Allowing failover servers to handle different areas 
of the exported filesystem removes the problem 
of writing the distributed locking protocol.

� Only one server active in a pair, no fast interconnect 
needed, existing high availability solutions can be 
used out of the box.

� Disadvantage is management of the file namespace.

� No longer a single coherent namespace, admins must 
remember what is where.

� Frontend 'virtual server' still needed to redirect to 
backend servers and must have namespace knowledge 
kept coherent.



High availability server products.

� The failover servers must communicate in order 
to do the resource failover needed for standard 
high availability work.

� The heartbeat signal is normally done over a shared 
LAN or serial interface.

� Red Hat Cluster Manager and Microsoft 
Wolfpack can use a shared SCSI or Fibre Channel 
disk partition for communication.

� The remaining complexity is in the frontend server.

� Maybe we can find a way for clients to handle this....





MS-DFS: The “poor mans” cluster.

� MS-DFS links can be used to redirect clients onto 
disparate backend servers.

� Pushes the complexity into the client code – already 
included by Microsoft.

� Creates the illusion of a simple, continuous 
namespace.

� Even works at the file level !

� At the cost of complexity of management, a 
distributed (clustered ?) Samba can be created 
with existing Samba functionality.



Conclusions.

� Clustering SMB is hard.

� Client failover is the best we can do.

� Most promising Samba code changes are in 
distributed “open files” code.

� In conjunction with Linux single system image code 
could eventually create an “out of the box” SMB 
cluster (productised by vendors).

� Until this code is created an organisation can 
create the illusion using MS-DFS if they can cope 
with the management complexity.



References 

� OpenGFS web site:

� opengfs.sourceforge.net

� Lustre web site :

� www.lustre.org

� OpenAFS web site :

� www.openafs.org

� Microsoft DFS guide :
http://www.microsoft.com/NTServer/nts/downloads/winfeatures/NTSDistrFile/AdminGuide.asphttp://www.microsoft.com/NTServer/nts/downloads/winfeatures/NTSDistrFile/AdminGuide.asp



Questions ?


