
TTF2PT1(1) TTF2PT1 Font Converter TTF2PT1(1)

NN AAMMEE
TTF2PT1 − A True Type to PostScript Type 1 Font Converter

SSYYNNOOPPSSIISS
ttf2pt1 [-options] ttffont.ttf [Fontname]

or

ttf2pt1 [-options] ttffont.ttf -

DDEESSCCRRIIPPTTIIOONN
Ttf2pt1 is a font converter from the True Type format (and some other formats supported by the FreeType
library as well) to the Adobe Type1 format.

The versions 3.0 and later got rather extensive post-processing algorithm that brings the converted fonts to
the requirements of the Type1 standard, tries to correct the rounding errors introduced during conversions
and some simple kinds of bugs that are typical for the public domain TTF fonts. It also generates the hints
that enable much better rendering of fonts in small sizes that are typical for the computer displays. But
ev erything has its price, and some of the optimizations may not work well for certain fonts. That’s why the
options were added to the converter, to control the performed optimizations.

OOPPTTIIOONNSS
The first variant creates the file Fontname.pfa (or Fontname.pfb if the option ‘−−bb’ was used) with
the converted font and Fontname.afm with the font metrics, the second one prints the font or another file
(if the option ’−−GG’ was used) on the standard output from where it can be immediately piped through some
filter. If no Fontname is specified for the first variant, the name is generated from ttffont by replacing
the .ttf filename suffix.

Most of the time no options are neccessary (with a possible exception of ‘−−ee’). But if there are some trou-
bles with the resulting font, they may be used to control the conversion. The ooppttiioonnss are:

• --aa − Include all the glyphs from the source file into the converted file. If this option is not specified then
only the glyphs that have been assigned some encoding are included, because the rest of glyphs would be
inaccessible anyway and would only consume the disk space. But some applications are clever enough
to change the encoding on the fly and thus use the other glyphs, in this case they could benefit from using
this option. But there is a catch: the X11 library has rather low limit for the font size. Including more
glyphs increases the file size and thus increases the chance of hitting this limit. See app/X11/README
for the description of a patch to X11 which fixes this problem.

• --bb − Encode the resulting font to produce a ready .pfb file.

• --dd suboptions − Debugging options. The suboptions are:

aa − Print out the absolute coordinates of dots in outlines. Such a font can not be used by any program
(that’s why this option is incompatible with ‘−−ee’) but it has proven to be a valuable debuging informa-
tion.

rr − Do not reverse the direction of outlines. The TTF fonts have the standard direction of outlines oppo-
site to the Type1 fonts. So they should be reversed during proper conversion. This option may be used for
debugging or to handle a TTF font with wrong direction of outlines (possibly, converted in a broken way
from a Type1 font). The first signs of the wrong direction are the letters like ‘‘P’’ or ‘‘B’’ without the
unpainted ‘‘holes’’ inside.

• --ee − Assemble the resulting font to produce a ready .pfa file.

[S.B.: Personally I don’t think that this option is particularly useful. The same result may be achieved
by piping the unassembled data through t1asm, the Type 1 assembler. And, anyways, it’s good to have
the t1utils package handy. But Mark and many users think that this functionality is good and it took not
much time to add this option.]

• --FF − Force the Unicode encoding: any type of MS encoding specified in the font is ignored and the font is
treated like it has Unicode encoding. WW AARRNNIINNGG:: this option is intended for buggy fonts which actually
are in Unicode but are marked as something else. The effect on the other fonts is unpredictable.

December 31, 2003 version 3.4.4 1

TTF2PT1(1) TTF2PT1 Font Converter TTF2PT1(1)

• --GG suboptions − File generation options. The suboptions may be lowercase or uppercase, the lowercase
ones disable the generation of particular files, the corresponding uppercase suboptions enable the genera-
tion of the same kind of files. If the result of ttf2pt1 is requested to be printed on the standard output, the
last enabling suboption of −−GG determines which file will be written to the standard output and the rest of
files will be discarded. For example, −−GG AA will request the AFM file. The suboptions to disable/enable
the generation of the files are:

ff//FF − The font file. Depending on the other options this file will have one of the suffixes .t1a, .pfa or
.pfb. If the conversion result is requested on the standard output (’-’ is used as the output file name)
then the font file will also be written there by default, if not overwritten by another suboption of −−GG.
DDeeffaauulltt:: eennaabblleedd

aa//AA − The Adobe font metrics file (.afm). DDeeffaauulltt:: eennaabblleedd

ee//EE − The dvips encoding file (.enc). DDeeffaauulltt:: ddiissaabblleedd

• --ll language[+argument] − Extract the fonts for the specified language from a multi-language Unicode
font. If this option is not used the converter tries to guess the language by the values of the shell variable
LANG. If it is not able to guess the language by LANG it tries all the languages in the order they are
listed.

After the plus sign an optional argument for the language extractor may be specified. The format of the
argument is absolutely up to the particular language converter. The primary purpose of the argument is to
support selection of planes for the multi-plane Eastern encodings but it can also be used in any other way.
The language extractor may decide to add the plane name in some form to the name of the resulting font.
None of the currently supported languages make any use of the argument yet.

As of now the following languages are supported:

latin1 − for all the languages using the Latin-1 encoding

latin2 − for the Central European languages

latin4 − for the Baltic languages

latin5 − for the Turkish language

cyrillic − for the languages with Cyrillic alphabet

russian − historic synonym for cyrillic

bulgarian − historic synonym for cyrillic

adobestd − for the AdobeStandard encoding used by TeX

plane+argument − to select one plane from a multi-byte encoding

The argument of the ‘‘plane’’ language may be in one of three forms:

plane+ppiidd==<pid>,,eeiidd==<eid>

plane+ppiidd==<pid>,,eeiidd==<eid>,,<plane_number>

plane+<plane_number>

Pid (TTF platform id) and eid (TTF encoding id) select a particular TTF encoding table in the original
font. They are specified as decimal numbers. If this particular encoding table is not present in the font file
then the conversion fails. The native ("ttf") front-end parser supports only pid=3 (Windows platform), the
FreeType-based ("ft") front-end supports any platform. If pid/eid is not specified then the TTF encoding
table is determined as usual: Unicode encoding if it’s first or an 8-bit encoding if not (and for an 8-bit
encoding the plane number is silently ignored). To prevent the converter from falling back to an 8-bit
encoding, specify the Unicode pid/eid value explicitly.

Plane_number is a hexadecimal (if starts with ‘‘00xx") or decimal number. It giv es the values of upper
bytes for which 256 characters will be selected. If not specified, defaults to 0. It is also used as a font

December 31, 2003 version 3.4.4 2

TTF2PT1(1) TTF2PT1 Font Converter TTF2PT1(1)

name suffix (the leading ‘‘0x’’ is not included into the suffix).

NNOO TTEE:: You may notice that the language names are not uniform: some are the names of particular lan-
guages and some are names of encodings. This is because of the different approaches. The original idea
was to implement a conversion from Unicode to the appropriate Windows encoding for a given language.
And then use the translation tables to generate the fonts in whatever final encodings are needed. This
would allow to pile together the Unicode fonts and the non-Unicode Windows fonts for that language
and let the program to sort them out automatically. And then generate fonts in all the possible encodings
for that language. An example of this approach is the Russian language support. But if there is no multi-
plicity of encodings used for some languages and if the non-Unicode fonts are not considered important
by the users, another way would be simpler to implement: just provide only one table for extraction of
the target encoding from Unicode and don’t bother with the translation tables. The latin* ‘‘languages’’
are examples of this approach. If somebody feels that he needs the Type1 fonts both in Latin-* and Win-
dows encodings he or she is absolutely welcome to submit the code to implement it.

WW AARRNNIINNGG:: Some of the glyphs included into the AdobeStandard encoding are not included into the Uni-
code standard. The most typical examples of such glyphs are ligatures like ‘fi’, ‘fl’ etc. Because of this
the font designers may place them at various places. The converter tries to do its best, if the glyphs have
honest Adobe names and/or are placed at the same codes as in the Microsoft fonts they will be picked up.
Otherwise a possible solution is to use the option ‘−−LL’ with an external map.

• --LL file[+[pid=<pid>,eid=<eid>,][plane]] − Extract the fonts for the specified language from a multi-
language font using the map from this file. This is rather like the option ‘−−ll’ but the encoding map is not
compiled into the program, it’s taken from that file, so it’s easy to edit. Examples of such files are pro-
vided in maps/adobe-standard-encoding.map, CP1250.map. (NNOO TTEE:: the ‘standard encod-
ing’ map does not include all the glyphs of the AdobeStandard encoding, it’s provided only as an exam-
ple.) The description of the supported map formats is in the file maps/unicode-sample.map.

Likewise to ‘−−ll’, an argument may be specified after the map file name. But in this case the argument has
fixed meaning: it selects the original TTF encoding table (the syntax is the same as in ‘−−ll ppllaannee’) and/or a
plane of the map file. The plane name also gets added after dash to the font name. The plane is a concept
used in the Eastern fonts with big number of glyphs: one TTF font gets divided into multiple Type1 fonts,
each containing one plane of up to 256 glyphs. But with a little creativity this concept may be used for
other purposes of combining multiple translation maps into one file. To extract multiple planes from a
TTF font ttf2pt1 must be run multiple times, each time with a different plane name specified.

The default original TTF encoding table used for the option ‘−−LL’ is Unicode. The map files may include
directives to specify different original TTF encodings. However if the pid/eid pair is specified with it
overrides any original encoding specified in the map file.

• --mm type=value − Set maximal or minimal limits of resources. These limits control the the font genera-
tion by limiting the resources that the font is permitted to require from the PostScript interpreter. The
currently supported types of limits are:

hh − the maximal hint stack depth for the substituted hints. The default value is 128, according to the lim-
itation in X11. This seems to be the lowest (and thus the safest) widespread value. To display the hint
stack depth required by each glyph in a .t1a file use the script scripts/cntstems.pl.

• --OO suboptions − Outline processing options. The suboptions may be lowercase or uppercase, the lower-
case ones disable the features, the corresponding uppercase suboptions enable the same features. The
suboptions to disable/enable features are:

bb//BB − Guessing of the ForceBold parameter. This parameter helps the Type1 engine to rasterize the bold
fonts properly at small sizes. But the algorithm used to guess the proper value of this flag makes that
guess based solely on the font name. In rare cases that may cause errors, in these cases you may want to
disable this guessing. DDeeffaauulltt:: eennaabblleedd

hh//HH − Autogeneration of hints. The really complex outlines may confuse the algorithm, so theoretically
it may be useful sometimes to disable them. Although up to now it seems that even bad hints are better
than no hints at all. DDeeffaauulltt:: eennaabblleedd

December 31, 2003 version 3.4.4 3

TTF2PT1(1) TTF2PT1 Font Converter TTF2PT1(1)

uu//UU − Hint substitution. Hint substitution is a technique permitting generation of more detailed hints for
the rasterizer. It allows to use different sets of hints for different parts of a glyph and change these sets as
neccessary during rasterization (that’s why ‘‘substituted"). So it should improve the quality of the fonts
rendered at small sizes. But there are two catches: First, the X11 library has rather low limit for the font
size. More detailed hints increase the file size and thus increase the chance of hitting this limit (that does
not mean that you shall hit it but you may if your fonts are particularly big). This is especially probable
for Unicode fonts converted with option ‘−−aa’, so you may want to use ‘−−aa’ together with ‘−−OOuu’. See
app/X11/README for the description of a patch to X11 which fixes this problem. Second, some raster-
izers (again, X11 is the typical example) have a limitation for total number of hints used when drawing a
glyph (also known as the hint stack depth). If that stack overflows the glyph is ignored. Starting from ver-
sion 3.22 ttf2pt1 uses algorithms to minimizing this depth, with the trade-off of slightly bigger font
files. The glyphs which still exceed the limit set by option ’−−mmhh’ hav e all the substituted hints removed
and only base hints left. The algorithms seem to have been refined far enough to make the fonts with
substituted hints look better than the fonts without them or at least the same. Still if the original fonts are
not well-designed the detailed hinting may emphasize the defects of the design, such as non-even thick-
ness of lines. So provided that you are not afraid of the X11 bug the best idea would be to generate a font
with this feature and without it, then compare the results using the program other/cmpf (see the
description in other/README) and decide which one looks better. DDeeffaauulltt:: eennaabblleedd

oo//OO − Space optimization of the outlines’ code. This kind of optimization never hurts, and the only rea-
son to disable this feature is for comparison of the generated fonts with the fonts generated by the previ-
ous versions of converter. Well, it _almost_ never hurts. As it turned out there exist some brain-damaged
printers which don’t understand it. Actually this feature does not change the outlines at all. The Type 1
font manual provides a set of redundant operators that make font description shorter, such as ‘10 hlineto’
instead of ‘0 10 rlineto’ to describe a horizontal line. This feature enables use of these operators.
DDeeffaauulltt:: eennaabblleedd

ss//SS − Smoothing of outlines. If the font is broken in some way (even the ones that are not easily notice-
able), such smoothing may break it further. So disabling this feature is the first thing to be tried if some
font looks odd. But with smoothing off the hint generation algorithms may not work properly too.
DDeeffaauulltt:: eennaabblleedd

tt//TT − Auto-scaling to the 1000x1000 Type1 standard matrix. The TTF fonts are described in terms of an
arbitrary matrix up to 4000x4000. The converted fonts must be scaled to conform to the Type1 standard.
But the scaling introduces additional rounding errors, so it may be curious sometimes to look at the font
in its original scale. DDeeffaauulltt:: eennaabblleedd

vv//VV − Do vectorization on the bitmap fonts. Functionally ‘‘vectorization’’ is the same thing as ‘‘autotrac-
ing’’, a different word is used purely to differentiate it from the Autotrace library. It tries to produce nice
smooth outlines from bitmaps. This feature is still a work in progress though the results are already
mostly decent. DDeeffaauulltt:: ddiissaabblleedd

ww//WW − Glyphs’ width corection. This option is designed to be used on broken fonts which specify too
narrow widths for the letters. You can tell that a font can benefit from this option if you see that the char-
acters are smashed together without any whitespace between them. This option causes the converter to
set the character widths to the actual width of this character plus the width of a typical vertical stem. But
on the other hand the well-designed fonts may have characters that look better if their widths are set
slightly narrower. Such well-designed fonts will benefit from disabling this feature. You may want to
convert a font with and without this feature, compare the results and select the better one. This feature
may be used only on proportional fonts, it has no effect on the fixed-width fonts. DDeeffaauulltt:: ddiissaabblleedd

zz//ZZ − Use the Autotrace library on the bitmap fonts. The results are horrible and tthhee uussee ooff tthhiiss ooppttiioonn iiss
nnoott rreeccoommmmeennddeedd. This option is present for experimental purposes. It may change or be removed in the
future. The working tracing can be achieved with option --OO VV. DDeeffaauulltt:: ddiissaabblleedd

• --pp parser_name − Use the specified front-end parser to read the font file. If this option is not used,
ttf2pt1 selects the parser automatically based on the suffix of the font file name, it uses the first parser in
its list that supports this font type. Now two parsers are supported:

December 31, 2003 version 3.4.4 4

TTF2PT1(1) TTF2PT1 Font Converter TTF2PT1(1)

ttf − built-in parser for the ttf files (suffix .ttf)

bdf − built-in parser for the BDF files (suffix .bdf)

ft − parser based on the FreeType-2 library (suffixes .ttf, .otf, .pfa, .pfb)

The parser ft is NNOO TT linked in by default. See Makefile for instructions how to enable it. We do no
support this parser on Windows: probably it will work but nobody tried and nobody knows how to build
it.

The conversion of the bitmap fonts (such as BDF) is simplistic yet, producing jagged outlines. When
converting such fonts, it might be a good idea to turn off the hint substitution (using option −−OOuu) because
the hints produced will be huge but not adding much to the quality of the fonts.

• --uu number − Mark the font with this value as its UniqueID. The UniqueID is used by the printers with
the hard disks to cache the rasterized characters and thus significantly speed-up the printing. Some of
those printers just can’t store the fonts without UniqueID on their disk.The problem is that the ID is sup-
posed to be unique, as it name says. And there is no easy way to create a guaranteed unique ID. Adobe
specifies the range 4000000-4999999 for private IDs but still it’s difficult to guarantee the uniqueness
within it. So if you don’t really need the UniqueID don’t use it, it’s optional. Luckily there are a few mil-
lions of possible IDs, so the chances of collision are rather low. If instead of the number a special value
‘AA’ is giv en then the converter generates the value of UniqueID automatically, as a hash of the font name.
(NNOO TTEE:: in the version 3.22 the algorithm for autogeneration of UniqueID was changed to fit the values
into the Adobe-spacified range. This means that if UniqueIDs were used then the printer’s cache may
need to be flushed before replacing the fonts converted by an old version with fonts converted by a newer
version). A simple way to find if any of the fonts in a given directory have duplicated UniqueIDs is to
use the command:

cat *.pf[ab] ⎪ grep UniqueID ⎪ sort ⎪ uniq -c ⎪ grep -v ’ 1 ’

Or if you use scripts/convert it will do that for you automatically plus it will also give the exact
list of files with duplicate UIDs.

• --vv size − Re-scale the font to get the size of a typical uppercase letter somewhere around the specified
size. Actually, it re-scales the whole font to get the size of one language-dependent letter to be at least of
the specified size. Now this letter is ‘‘A’’ in all the supported languages. The size is specified in the points
of the Type 1 coordinate grids, the maximal value is 1000. This is an experimental option and should be
used with caution. It tries to increase the visible font size for a given point size and thus make the font
more readable. But if overused it may cause the fonts to look out of scale. As of now the interesting val-
ues of size for this option seem to be located mostly between 600 and 850. This re-scaling may be quite
useful but needs more experience to understand the balance of its effects.

• --WW level − Select the verbosity level of the warnings. Currently the levels from 0 to 4 are supported.
Level 0 means no warnings at all, level 4 means all the possible warnings. The default level is 3. Other
levels may be added in the future, so using the level number 99 is recommended to get all the possible
warnings. Going below lev el 2 is not generally recommended because you may miss valuable informa-
tion about the problems with the fonts being converted.

• OObbssoolleettee ooppttiioonn:: --AA − Print the font metrics (.afm file) instead of the font on STDOUT. Use −−GGAA
instead.

• VV eerryy oobbssoolleettee ooppttiioonn::

The algorithm that implemented the forced fixed width had major flaws, so it was disabled. The code is
still in the program and some day it will be refined and returned back. Meanwhile the option name ‘−−ff’
was reused for another option. The old version was:

--ff − Don’t try to force the fixed width of font. Normally the converter considers the fonts in which the
glyph width deviates by not more than 5% as buggy fixed width fonts and forces them to have really
fixed width. If this is undesirable, it can be disabled by this option.

The .pfa font format supposes that the description of the characters is binary encoded and encrypted. This

December 31, 2003 version 3.4.4 5

TTF2PT1(1) TTF2PT1 Font Converter TTF2PT1(1)

converter does not encode or encrypt the data by default, you have to specify the option ‘−−ee’ or use the
t1asm program to assemble (that means, encode and encrypt) the font program. The t1asm program that
is included with the converter is actually a part of the t1utils package, rather old version of which may
be obtained from

http://ttf2pt1.sourceforge.net/t1utils.tar.gz

Note that t1asm from the old version of that package won’t work properly with the files generated by
ttf2pt1 version 3.20 and later. Please use t1asm packaged with ttf2pt1 or from the new version
t1utils instead. For a newer version of t1utils please look at

http://www.lcdf.org/˜eddietwo/type/

EEXXAAMMPPLLEESS
So, the following command lines:

ttf2pt1 -e ttffont.ttf t1font

ttf2pt1 ttffont.ttf - ⎪ t1asm >t1font.pfa

represent two ways to get a working font. The benefit of the second form is that other filters may be applied
to the font between the converter and assembler.

FFIILLEESS
• TTF2PT1_LIBXDIR/t1asm

• TTF2PT1_SHAREDIR/*

• TTF2PT1_SHAREDIR/scripts/*

• TTF2PT1_SHAREDIR/other/*

• TTF2PT1_SHAREDIR/README

• TTF2PT1_SHAREDIR/FONTS

SSEEEE AALLSSOO
• the ttf2pt1_convert(1) manpage

• the ttf2pt1_x2gs(1) manpage

• the t1asm(1) manpage

• ttf2pt1-announce@lists.sourceforge.net

The mailing list with announcements about ttf2pt1. It is a moderated mailing with extremely low traf-
fic. Everyone is encouraged to subscribe to keep in touch with the current status of project. To sub-
scribe use the Web interface at http://lists.sourceforge.net/mailman/listinfo/ttf2pt1-announce. If you
have only e-mail access to the Net then send a subscribe request to the development mailing list
ttf2pt1-devel@lists.sourceforge.net and somebody will help you with subscription.

• ttf2pt1-devel@lists.sourceforge.net

ttf2pt1-users@lists.sourceforge.net

The ttf2pt1 mailing lists for development and users issues. They hav e not that much traffic either. To
subscribe use the Web interface at http://lists.sourceforge.net/mailman/listinfo/ttf2pt1-devel and
http://lists.sourceforge.net/mailman/listinfo/ttf2pt1-users. If you have only e-mail access to the Net
then send a subscribe request to the development mailing list ttf2pt1-devel@lists.sourceforge.net and
somebody will help you with subscription.

• http://ttf2pt1.sourceforge.net

The main page of the project.

http://www.netspace.net.au/˜mheath/ttf2pt1/

The old main page of the project.

December 31, 2003 version 3.4.4 6

TTF2PT1(1) TTF2PT1 Font Converter TTF2PT1(1)

BB UUGGSS
It seems that many Eastern fonts use features of the TTF format that are not supported by the ttf2pt1’s built-
in front-end parser. Because of this for now we recommend using the FreeType-based parser (option ’−−pp
fftt’) with the ‘‘plane’’ language.

TT rroouubblleesshhoooottiinngg aanndd bbuugg rreeppoorrttss

Have problems with conversion of some font ? The converter dumps core ? Or your printer refuses to
understand the converted fonts ? Or some characters are missing ? Or some characters look strange ?

Send the bug reports to the ttf2pt1 development mailing list at ttf2pt1-devel@lists.sourceforge.net.

Try to collect more information about the problem and include it into the bug report. (Of course, even better
if you would provide a ready fix, but just a detailed bug report is also good). Provide detailed information
about your problem, this will speed up the response greatly. Don’t just write ‘‘this font looks strange after
conversion’’ but describe what’s exactly wrong with it: for example, what characters look wrong and what
exactly is wrong about their look. Providing a link to the original font file would be also a good idea. Try to
do a little troublehooting and report its result. This not only would help with the fix but may also give you a
temporary work-around for the bug.

First, enable full warnings with option ‘−−WW9999’, save them to a file and read carefully. Sometimes the pro-
lem is with a not implemented feature which is reported in the warnings. Still, reporting about such prob-
lems may be a good idea: some features were missed to cut corners, in hope that no real font is using them.
So a report about a font using such a feature may motivate someone to implement it. Of course, you may be
the most motivated person: after all, you are the one wishing to convert that font. ;−) Seriously, the philoso-
phy ‘‘scrath your own itch’’ seems to be the strongest moving force behind the Open Source software.

The next step is playing with the options. This serves a dual purpose: on one hand, it helps to localize the
bug, on the other hand you may be able to get a working version of the font for the meantime while the bug
is being fixed. The typical options to try out are: first ‘−−OOuu’, if it does not help then ‘−−OOss’, then ‘−−OOhh’,
then ‘−−OOoo’. They are described in a bit more detail above. Try them one by one and in combinations. See
if with them the resulting fonts look better.

On some fonts ttf2pt1 just crashes. Commonly that happens because the font being converted is highly
defective (although sometimes the bug is in ttf2pt1 itself). In any case it should not crash, so the reports
about such cases will help to handle these defects properly in future.

We try to respond to the bug reports in a timely fashion but alas, this may not always be possible, especially
if the problem is complex. This is a volunteer project and its resources are limited. Because of this we
would appreciate bug reports as detailed as possible, and we would appreciate the ready fixes and contribu-
tions even more.

HHIISSTT OORRYY
Based on ttf2pfa by Andrew Weeks, and help from Frank Siegert.

Modification by Mark Heath.

Further modification by Sergey Babkin.

The Type1 assembler by I. Lee Hetherington with modifications by Kai-Uwe Herbing.

December 31, 2003 version 3.4.4 7

TTF2PT1(1) TTF2PT1 Font Converter TTF2PT1(1)

December 31, 2003 version 3.4.4 8

