/** * $Id:$ * ***** BEGIN GPL/BL DUAL LICENSE BLOCK ***** * * The contents of this file may be used under the terms of either the GNU * General Public License Version 2 or later (the "GPL", see * http://www.gnu.org/licenses/gpl.html ), or the Blender License 1.0 or * later (the "BL", see http://www.blender.org/BL/ ) which has to be * bought from the Blender Foundation to become active, in which case the * above mentioned GPL option does not apply. * * The Original Code is Copyright (C) 2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL/BL DUAL LICENSE BLOCK ***** */ /* curve.c MIXED MODEL * * maart 95 * * */ #include "blender.h" void freeNurblist(); void duplicateNurblist(ListBase *lb1, ListBase *lb2); void unlink_curve(Curve *cu) { int a; for(a=0; atotcol; a++) { if(cu->mat[a]) cu->mat[a]->id.us--; cu->mat[a]= 0; } if(cu->vfont) cu->vfont->id.us--; cu->vfont= 0; if(cu->key) cu->key->id.us--; cu->key= 0; if(cu->ipo) cu->ipo->id.us--; cu->ipo= 0; } /* niet curve zelf vrijgeven */ void free_curve(Curve *cu) { freeNurblist(&cu->nurb); freelistN(&cu->bev); freedisplist(&cu->disp); unlink_curve(cu); if(cu->mat) freeN(cu->mat); if(cu->str) freeN(cu->str); if(cu->bb) freeN(cu->bb); if(cu->path) free_path(cu->path); } Curve *add_curve(int type) { Curve *cu; char *str; if(type==OB_CURVE) str= "Curve"; else if(type==OB_SURF) str= "Surf"; else str= "Text"; cu= alloc_libblock(&G.main->curve, ID_CU, str); cu->size[0]= cu->size[1]= cu->size[2]= 1.0; cu->flag= CU_FRONT+CU_BACK; cu->pathlen= 100; cu->resolu= cu->resolv= 6; cu->width= 1.0; cu->spacing= cu->linedist= 1.0; cu->fsize= 1.0; cu->texflag= AUTOSPACE; cu->bb= unit_boundbox(); return cu; } Curve *copy_curve(Curve *cu) { Curve *cun; int a; cun= copy_libblock(cu); cun->nurb.first= cun->nurb.last= 0; duplicateNurblist( &(cun->nurb), &(cu->nurb)); cun->mat= dupallocN(cu->mat); for(a=0; atotcol; a++) { id_us_plus(cun->mat[a]); } cun->str= dupallocN(cu->str); cun->bb= dupallocN(cu->bb); cun->key= copy_key(cu->key); if(cun->key) cun->key->from= (ID *)cun; cun->disp.first= cun->disp.last= 0; cun->bev.first= cun->bev.last= 0; cun->path= 0; /* ook single user ipo */ if(cun->ipo) cun->ipo= copy_ipo(cun->ipo); id_us_plus(cun->vfont); return cun; } void make_local_curve(Curve *cu) { Object *ob; Curve *cun; int local=0, lib=0; /* - zijn er alleen lib users: niet doen * - zijn er alleen locale users: flag zetten * - mixed: copy */ if(cu->id.lib==0) return; if(cu->vfont) cu->vfont->id.lib= 0; if(cu->id.us==1) { cu->id.lib= 0; cu->id.flag= LIB_LOCAL; new_id(0, cu, 0); return; } ob= G.main->object.first; while(ob) { if(ob->data==cu) { if(ob->id.lib) lib= 1; else local= 1; } ob= ob->id.next; } if(local && lib==0) { cu->id.lib= 0; cu->id.flag= LIB_LOCAL; new_id(0, cu, 0); } else if(local && lib) { cun= copy_curve(cu); cun->id.us= 0; ob= G.main->object.first; while(ob) { if(ob->data==cu) { if(ob->id.lib==0) { ob->data= cun; cun->id.us++; cu->id.us--; } } ob= ob->id.next; } } } void test_curve_type(Object *ob) { Nurb *nu; Curve *cu; cu= ob->data; if(cu->vfont) { ob->type= OB_FONT; return; } else { nu= cu->nurb.first; while(nu) { if(nu->pntsv>1) { ob->type= OB_SURF; return; } nu= nu->next; } } ob->type= OB_CURVE; } void tex_space_curve(Curve *cu) { DispList *dl; BoundBox *bb; float *data, min[3], max[3], loc[3], size[3]; int tot, doit= 0; if(cu->bb==0) cu->bb= callocN(sizeof(BoundBox), "boundbox"); bb= cu->bb; INIT_MINMAX(min, max); dl= cu->disp.first; while(dl) { if(dl->type==DL_INDEX3 || dl->type==DL_INDEX3) tot= dl->nr; else tot= dl->nr*dl->parts; if(tot) doit= 1; data= dl->verts; while(tot--) { DO_MINMAX(data, min, max); data+= 3; } dl= dl->next; } if(doit) { loc[0]= (min[0]+max[0])/2.0; loc[1]= (min[1]+max[1])/2.0; loc[2]= (min[2]+max[2])/2.0; size[0]= (max[0]-min[0])/2.0; size[1]= (max[1]-min[1])/2.0; size[2]= (max[2]-min[2])/2.0; } else { loc[0]= loc[1]= loc[2]= 0.0; size[0]= size[1]= size[2]= 1.0; } bb->vec[0][0]=bb->vec[1][0]=bb->vec[2][0]=bb->vec[3][0]= loc[0]-size[0]; bb->vec[4][0]=bb->vec[5][0]=bb->vec[6][0]=bb->vec[7][0]= loc[0]+size[0]; bb->vec[0][1]=bb->vec[1][1]=bb->vec[4][1]=bb->vec[5][1]= loc[1]-size[1]; bb->vec[2][1]=bb->vec[3][1]=bb->vec[6][1]=bb->vec[7][1]= loc[1]+size[1]; bb->vec[0][2]=bb->vec[3][2]=bb->vec[4][2]=bb->vec[7][2]= loc[2]-size[2]; bb->vec[1][2]=bb->vec[2][2]=bb->vec[5][2]=bb->vec[6][2]= loc[2]+size[2]; if(cu->texflag & AUTOSPACE) { VECCOPY(cu->loc, loc); VECCOPY(cu->size, size); cu->rot[0]= cu->rot[1]= cu->rot[2]= 0.0; if(cu->size[0]==0.0) cu->size[0]= 1.0; else if(cu->size[0]>0.0 && cu->size[0]<0.00001) cu->size[0]= 0.00001; else if(cu->size[0]<0.0 && cu->size[0]> -0.00001) cu->size[0]= -0.00001; if(cu->size[1]==0.0) cu->size[1]= 1.0; else if(cu->size[1]>0.0 && cu->size[1]<0.00001) cu->size[1]= 0.00001; else if(cu->size[1]<0.0 && cu->size[1]> -0.00001) cu->size[1]= -0.00001; if(cu->size[2]==0.0) cu->size[2]= 1.0; else if(cu->size[2]>0.0 && cu->size[2]<0.00001) cu->size[2]= 0.00001; else if(cu->size[2]<0.0 && cu->size[2]> -0.00001) cu->size[2]= -0.00001; } } int count_curveverts(ListBase *nurb) { Nurb *nu; int tot=0; nu= nurb->first; while(nu) { if(nu->bezt) tot+= 3*nu->pntsu; else if(nu->bp) tot+= nu->pntsu*nu->pntsv; nu= nu->next; } return tot; } /* **************** NURBS ROUTINES ******************** */ void freeNurb(nu) Nurb *nu; { if(nu==0) return; if(nu->bezt) freeN(nu->bezt); nu->bezt= 0; if(nu->bp) freeN(nu->bp); nu->bp= 0; if(nu->knotsu) freeN(nu->knotsu); nu->knotsu= 0; if(nu->knotsv) freeN(nu->knotsv); nu->knotsv= 0; /* if(nu->trim.first) freeNurblist(&(nu->trim)); */ freeN(nu); } void freeNurblist(lb) ListBase *lb; { Nurb *nu, *next; if(lb==0) return; nu= lb->first; while(nu) { next= nu->next; freeNurb(nu); nu= next; } lb->first= lb->last= 0; } Nurb *duplicateNurb(Nurb *nu) { Nurb *new; int len; new= mallocstructN(Nurb, 1, "duplicateNurb"); if(new==0) return 0; memcpy(new, nu, sizeof(Nurb)); if(nu->bezt) { new->bezt= mallocstructN(BezTriple, nu->pntsu, "duplicateNurb2"); memcpy(new->bezt, nu->bezt, nu->pntsu*sizeof(BezTriple)); } else { len= nu->pntsu*nu->pntsv; new->bp= mallocstructN(BPoint, len, "duplicateNurb3"); memcpy(new->bp, nu->bp, len*sizeof(BPoint)); new->knotsu=new->knotsv= 0; if(nu->knotsu) { len= KNOTSU(nu); if(len) { new->knotsu= mallocN(len*4, "duplicateNurb4"); memcpy(new->knotsu, nu->knotsu, 4*len); } } if(nu->pntsv>1 && nu->knotsv) { len= KNOTSV(nu); if(len) { new->knotsv= mallocN(len*4, "duplicateNurb5"); memcpy(new->knotsv, nu->knotsv, 4*len); } } } return new; } void duplicateNurblist(ListBase *lb1, ListBase *lb2) { Nurb *nu, *nun; freeNurblist(lb1); nu= lb2->first; while(nu) { nun= duplicateNurb(nu); addtail(lb1, nun); nu= nu->next; } } void test2DNurb(nu) Nurb *nu; { BezTriple *bezt; BPoint *bp; int a; if( nu->type== CU_BEZIER+CU_2D ) { a= nu->pntsu; bezt= nu->bezt; while(a--) { bezt->vec[0][2]= 0.0; bezt->vec[1][2]= 0.0; bezt->vec[2][2]= 0.0; bezt++; } } else if(nu->type & CU_2D) { a= nu->pntsu*nu->pntsv; bp= nu->bp; while(a--) { bp->vec[2]= 0.0; bp++; } } } void minmaxNurb(nu, min, max) Nurb *nu; float *min, *max; { BezTriple *bezt; BPoint *bp; int a, b; if( (nu->type & 7)==CU_BEZIER ) { a= nu->pntsu; bezt= nu->bezt; while(a--) { DO_MINMAX(bezt->vec[0], min, max); DO_MINMAX(bezt->vec[1], min, max); DO_MINMAX(bezt->vec[2], min, max); bezt++; } } else { a= nu->pntsu*nu->pntsv; bp= nu->bp; while(a--) { DO_MINMAX(bp->vec, min, max); bp++; } } } /* ~~~~~~~~~~~~~~~~~~~~Non Uniform Rational B Spline berekeningen ~~~~~~~~~~~ */ /* voor de goede orde: eigenlijk horen hier doubles gebruikt te worden */ void extend_spline(float * pnts, int in, int out) { float *_pnts; double * add; int i, j, k; _pnts = pnts; add = mallocstructN(double, in, "extend_spline"); for (k = 3; k > 0; k--){ pnts = _pnts; /* punten kopieren naar add */ for (i = 0; i < in; i++){ add[i] = *pnts; pnts += 3; } /* inverse forward differencen */ for (i = 0; i < in - 1; i++){ for (j = in - 1; j > i; j--){ add[j] -= add[j - 1]; } } pnts = _pnts; for (i = out; i > 0; i--){ *pnts = add[0]; pnts += 3; for (j = 0; j < in - 1; j++){ add[j] += add[j+1]; } } _pnts++; } freeN(add); } void calcknots(knots, aantal, order, type) float *knots; /* aantal pnts NIET gecorrigeerd voor cyclic */ short aantal, order, type; /* 0: uniform, 1: endpoints, 2: bezier */ { float k; int a; if(type==0) { for(a=0;a=order && a<=aantal) k+= 1.0; } } else if(type==2) { if(order==4) { k= 0.34; for(a=0;a=order && a<=aantal) k+= (0.5); knots[a]= ffloor(k); } } } } void makecyclicknots(knots, pnts, order) float *knots; short pnts, order; /* aantal pnts NIET gecorrigeerd voor cyclic */ { int a, b; if(knots==0) return; /* eerst lange rijen (order -1) dezelfde knots aan uiteinde verwijderen */ if(order>2) { b= pnts+order-1; for(a=1; aknotsu) { len= KNOTSU(nu); while(len--) { SWITCH_INT(nu->knotsu[len]); } } if(nu->knotsv) { len= KNOTSV(nu); while(len--) { SWITCH_INT(nu->knotsv[len]); } } } void makeknots(nu, uv, type) /* 0: uniform, 1: endpoints, 2: bezier */ Nurb *nu; short uv, type; { if( (nu->type & 7)==CU_NURBS ) { if(uv & 1) { if(nu->knotsu) freeN(nu->knotsu); nu->knotsu= callocN(4+4*KNOTSU(nu), "makeknots"); calcknots(nu->knotsu, nu->pntsu, nu->orderu, type); if(nu->flagu & 1) makecyclicknots(nu->knotsu, nu->pntsu, nu->orderu); } if(uv & 2) { if(nu->knotsv) freeN(nu->knotsv); nu->knotsv= callocN(4+4*KNOTSV(nu), "makeknots"); calcknots(nu->knotsv, nu->pntsv, nu->orderv, type); if(nu->flagv & 1) makecyclicknots(nu->knotsv, nu->pntsv, nu->orderv); } } } void basisNurb(t, order, pnts, knots, basis, start, end) float t; short order, pnts; float *knots, *basis; int *start, *end; { float d, e; int i, j, i1, i2, k, orderpluspnts; orderpluspnts= order+pnts; /* dit stuk is order '1' */ for(i=0;i= knots[i] && t= orderpluspnts) i2= orderpluspnts-j-1; for(i= i1; i<=i2; i++) { if(basis[i]!=0.0) d= ((t-knots[i])*basis[i]) / (knots[i+j-1]-knots[i]); else d= 0.0; if(basis[i+1]!=0.0) e= ((knots[i+j]-t)*basis[i+1]) / (knots[i+j]-knots[i+1]); else e= 0.0; basis[i]= d+e; } } *start= 1000; *end= 0; for(i=i1; i<=i2; i++) { if(basis[i]>0.0) { *end= i; if(*start==1000) *start= i; } } } void makeNurbfaces(nu, data) Nurb *nu; float *data; /* moet 3*4*resolu*resolv lang zijn en op nul staan */ { BPoint *bp; float *basisu, *basis, *basisv, *sum, *fp, *vec, *in; float u, v, ustart, uend, ustep, vstart, vend, vstep, sumdiv; int i, j, iofs, jofs, cycl, len, resolu, resolv; int istart, iend, jsta, jen, *jstart, *jend, ratcomp; if(nu->knotsu==0 || nu->knotsv==0) return; if(nu->orderu>nu->pntsu) return; if(nu->orderv>nu->pntsv) return; if(data==0) return; /* alloceren en vars goedzetten */ len= nu->pntsu*nu->pntsv; if(len==0) return; sum= (float *)callocN(4*len, "makeNurbfaces1"); resolu= nu->resolu; resolv= nu->resolv; len= resolu*resolv; if(len==0) { freeN(sum); return; } bp= nu->bp; i= nu->pntsu*nu->pntsv; ratcomp=0; while(i--) { if(bp->vec[3]!=1.0) { ratcomp= 1; break; } bp++; } fp= nu->knotsu; ustart= fp[nu->orderu-1]+0.0005; if(nu->flagu & 1) uend= fp[nu->pntsu+nu->orderu-1]; else uend= fp[nu->pntsu]; ustep= (uend-ustart-0.001)/(resolu-1+(nu->flagu & 1)); basisu= (float *)mallocN(4*KNOTSU(nu), "makeNurbfaces3"); fp= nu->knotsv; vstart= fp[nu->orderv-1]+0.0005; if(nu->flagv & 1) vend= fp[nu->pntsv+nu->orderv-1]; else vend= fp[nu->pntsv]; vstep= (vend-vstart-0.001)/(resolv-1+(nu->flagv & 1)); len= KNOTSV(nu); basisv= (float *)mallocN(4*len*resolv, "makeNurbfaces3"); jstart= (int *)mallocN(4*resolv, "makeNurbfaces4"); jend= (int *)mallocN(4*resolv, "makeNurbfaces5"); /* voorberekenen basisv en jstart,jend */ if(nu->flagv & 1) cycl= nu->orderv-1; else cycl= 0; v= vstart; basis= basisv; while(resolv--) { basisNurb(v, nu->orderv, nu->pntsv+cycl, nu->knotsv, basis, jstart+resolv, jend+resolv); basis+= KNOTSV(nu); v+= vstep; } if(nu->flagu & 1) cycl= nu->orderu-1; else cycl= 0; in= data; u= ustart; while(resolu--) { basisNurb(u, nu->orderu, nu->pntsu+cycl, nu->knotsu, basisu, &istart, &iend); basis= basisv; resolv= nu->resolv; while(resolv--) { jsta= jstart[resolv]; jen= jend[resolv]; /* bereken sum */ sumdiv= 0.0; fp= sum; for(j= jsta; j<=jen; j++) { if(j>=nu->pntsv) jofs= (j - nu->pntsv); else jofs= j; bp= nu->bp+ nu->pntsu*jofs+istart-1; for(i= istart; i<=iend; i++, fp++) { if(i>= nu->pntsu) { iofs= i- nu->pntsu; bp= nu->bp+ nu->pntsu*jofs+iofs; } else bp++; if(ratcomp) { *fp= basisu[i]*basis[j]*bp->vec[3]; sumdiv+= *fp; } else *fp= basisu[i]*basis[j]; } } if(ratcomp) { fp= sum; for(i= istart; i<=iend; i++) { for(j= jsta; j<=jen; j++, fp++) { *fp/= sumdiv; } } } /* een! (1.0) echt punt nu */ fp= sum; for(j= jsta; j<=jen; j++) { if(j>=nu->pntsv) jofs= (j - nu->pntsv); else jofs= j; bp= nu->bp+ nu->pntsu*jofs+istart-1; for(i= istart; i<=iend; i++, fp++) { if(i>= nu->pntsu) { iofs= i- nu->pntsu; bp= nu->bp+ nu->pntsu*jofs+iofs; } else bp++; if(*fp!=0.0) { in[0]+= (*fp) * bp->vec[0]; in[1]+= (*fp) * bp->vec[1]; in[2]+= (*fp) * bp->vec[2]; } } } in+=3; basis+= KNOTSV(nu); } u+= ustep; } /* vrijgeven */ freeN(sum); freeN(basisu); freeN(basisv); freeN(jstart); freeN(jend); } void makeNurbcurve_forw(nu, data) Nurb *nu; float *data; /* moet 3*4*pntsu*resolu lang zijn en op nul staan */ { BPoint *bp; float *basisu, *sum, *fp, *vec, *in; float u, ustart, uend, ustep, sumdiv; int i, j, k, len, resolu, istart, iend; int wanted, org; if(nu->knotsu==0) return; if(data==0) return; /* alloceren en vars goedzetten */ len= nu->pntsu; if(len==0) return; sum= (float *)callocN(4*len, "makeNurbcurve1"); resolu= nu->resolu*nu->pntsu; if(resolu==0) { freeN(sum); return; } fp= nu->knotsu; ustart= fp[nu->orderu-1]; uend= fp[nu->pntsu]; ustep= (uend-ustart-0.000001)/(resolu-1); basisu= (float *)mallocN(4*(nu->orderu+nu->pntsu), "makeNurbcurve3"); in= data; u= ustart; for (k = nu->orderu - 1; k < nu->pntsu; k++){ wanted = ((nu->knotsu[k+1] - nu->knotsu[k]) / ustep); org = 4; /* gelijk aan order */ if (org > wanted) org = wanted; for (j = org; j > 0; j--){ basisNurb(u, nu->orderu, nu->pntsu, nu->knotsu, basisu, &istart, &iend); /* bereken sum */ sumdiv= 0.0; fp= sum; for(i= istart; i<=iend; i++, fp++) { /* hier nog rationele component doen */ *fp= basisu[i]; sumdiv+= *fp; } if(sumdiv!=0.0) if(sumdiv<0.999 || sumdiv>1.001) { /* is dit normaliseren ook nodig? */ fp= sum; for(i= istart; i<=iend; i++, fp++) { *fp/= sumdiv; } } /* een! (1.0) echt punt nu */ fp= sum; bp= nu->bp+ istart; for(i= istart; i<=iend; i++, bp++, fp++) { if(*fp!=0.0) { in[0]+= (*fp) * bp->vec[0]; in[1]+= (*fp) * bp->vec[1]; in[2]+= (*fp) * bp->vec[2]; } } in+=3; u+= ustep; } if (wanted > org){ extend_spline(in - 3 * org, org, wanted); in += 3 * (wanted - org); u += ustep * (wanted - org); } } /* vrijgeven */ freeN(sum); freeN(basisu); } void makeNurbcurve(Nurb *nu, float *data, int dim) /* data moet dim*4*pntsu*resolu lang zijn en op nul staan */ { BPoint *bp; float *basisu, *sum, *fp, *vec, *in; float u, ustart, uend, ustep, sumdiv; int a, i, len, resolu, istart, iend, cycl; if(nu->knotsu==0) return; if(nu->orderu>nu->pntsu) return; if(data==0) return; /* alloceren en vars goedzetten */ len= nu->pntsu; if(len==0) return; sum= (float *)callocN(4*len, "makeNurbcurve1"); resolu= nu->resolu*nu->pntsu; if(resolu==0) { freeN(sum); return; } fp= nu->knotsu; ustart= fp[nu->orderu-1]; if(nu->flagu & 1) uend= fp[nu->pntsu+nu->orderu-1]; else uend= fp[nu->pntsu]; ustep= (uend-ustart-0.01)/(resolu-1+(nu->flagu & 1)); basisu= (float *)mallocN(4*KNOTSU(nu), "makeNurbcurve3"); if(nu->flagu & 1) cycl= nu->orderu-1; else cycl= 0; in= data; u= ustart; while(resolu--) { basisNurb(u, nu->orderu, nu->pntsu+cycl, nu->knotsu, basisu, &istart, &iend); /* bereken sum */ sumdiv= 0.0; fp= sum; bp= nu->bp+ istart-1; for(i= istart; i<=iend; i++, fp++) { if(i>=nu->pntsu) bp= nu->bp+(i - nu->pntsu); else bp++; *fp= basisu[i]*bp->vec[3]; sumdiv+= *fp; } if(sumdiv!=0.0) if(sumdiv<0.999 || sumdiv>1.001) { /* is dit normaliseren ook nodig? */ fp= sum; for(i= istart; i<=iend; i++, fp++) { *fp/= sumdiv; } } /* een! (1.0) echt punt nu */ fp= sum; bp= nu->bp+ istart-1; for(i= istart; i<=iend; i++, fp++) { if(i>=nu->pntsu) bp= nu->bp+(i - nu->pntsu); else bp++; if(*fp!=0.0) { in[0]+= (*fp) * bp->vec[0]; in[1]+= (*fp) * bp->vec[1]; if(dim>=3) { in[2]+= (*fp) * bp->vec[2]; if(dim==4) in[3]+= (*fp) * bp->alfa; } } } in+= dim; u+= ustep; } /* vrijgeven */ freeN(sum); freeN(basisu); } void maakbez(q0,q1,q2,q3,p,it) float q0,q1,q2,q3,*p; int it; { float rt0,rt1,rt2,rt3,f; int a; f= (float)it; rt0= q0; rt1= 3.0*(q1-q0)/f; f*= f; rt2= 3.0*(q0-2*q1+q2)/f; f*= it; rt3= (q3-q0+3.0*(q1-q2))/f; q0= rt0; q1= rt1+rt2+rt3; q2= 2*rt2+6*rt3; q3= 6*rt3; for(a=0; a<=it; a++) { *p= q0; p+= 3; q0+= q1; q1+= q2; q2+= q3; } } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ void make_orco_surf(Curve *cu) { Nurb *nu; KeyBlock *kb; int tot=0; float *data; /* eerst voorspellen hoelang datablok moet worden */ nu= cu->nurb.first; while(nu) { if(nu->pntsv>1) tot+= nu->resolu*nu->resolv; nu= nu->next; } /* makeNurbfaces wil nullen */ data= cu->orco= callocN(3*4*tot, "make_orco"); /* if(cu->key) { */ /* kb= cu->key->refkey; */ /* if (kb) { */ /* fp= kb->data; */ /* for(a=0; aloc[0])/me->size[0]; */ /* orco[1]= (fp[1]-me->loc[1])/me->size[1]; */ /* orco[2]= (fp[2]-me->loc[2])/me->size[2]; */ /* if(atotelem) fp+=3; */ /* } */ /* } */ /* } */ nu= cu->nurb.first; while(nu) { if(nu->pntsv>1) { tot= nu->resolu*nu->resolv; makeNurbfaces(nu, data); while(tot--) { data[0]= (data[0]-cu->loc[0])/cu->size[0]; data[1]= (data[1]-cu->loc[1])/cu->size[1]; data[2]= (data[2]-cu->loc[2])/cu->size[2]; data+= 3; } } nu= nu->next; } /* loadkeypostype(22, base, base); */ } /* ***************** BEVEL ****************** */ void makebevelcurve(Object *ob, ListBase *disp) { DispList *dl, *dlnew; Curve *bevcu, *cu; float *fp, facx, facy, hoek, dhoek; int nr, a; cu= ob->data; if(cu->bevobj && cu->bevobj!=ob) { if(cu->bevobj->type==OB_CURVE) { bevcu= cu->bevobj->data; if(bevcu->ext1==0.0 && bevcu->ext2==0.0) { facx= cu->bevobj->size[0]; facy= cu->bevobj->size[1]; dl= bevcu->disp.first; if(dl==0) { makeDispList(cu->bevobj); dl= bevcu->disp.first; } while(dl) { if ELEM(dl->type, DL_POLY, DL_SEGM) { dlnew= mallocN(sizeof(DispList), "makebevelcurve1"); *dlnew= *dl; dlnew->verts= mallocN(12*dl->parts*dl->nr, "makebevelcurve1"); memcpy(dlnew->verts, dl->verts, 12*dl->parts*dl->nr); addtail(disp, dlnew); fp= dlnew->verts; nr= dlnew->parts*dlnew->nr; while(nr--) { fp[2]= fp[1]*facy; fp[1]= -fp[0]*facx; fp[0]= 0.0; fp+= 3; } } dl= dl->next; } } } } else if(cu->ext2==0.0) { dl= callocN(sizeof(DispList), "makebevelcurve2"); dl->verts= mallocN(2*12, "makebevelcurve2"); addtail(disp, dl); dl->type= DL_SEGM; dl->parts= 1; dl->nr= 2; fp= dl->verts; fp[0]= fp[1]= 0.0; fp[2]= -cu->ext1; fp[3]= fp[4]= 0.0; fp[5]= cu->ext1; } else { nr= 4+2*cu->bevresol; dl= callocN(sizeof(DispList), "makebevelcurve3"); dl->verts= mallocN(nr*12, "makebevelcurve3"); addtail(disp, dl); dl->type= DL_SEGM; dl->parts= 1; dl->nr= nr; /* eerst cirkel maken */ fp= dl->verts; hoek= -0.5*M_PI; dhoek= M_PI/(nr-2); for(a=0; aext2); fp[2]= fsin(hoek)*(cu->ext2); hoek+= dhoek; fp+= 3; if(cu->ext1!=0.0 && a==((nr/2)-1) ) { VECCOPY(fp, fp-3); fp+=3; a++; } } if(cu->ext1==0.0) dl->nr--; else { fp= dl->verts; for(a=0; aext1); else fp[2]+= (cu->ext1); fp+= 3; } } } } short bevelinside(bl1,bl2) BevList *bl1,*bl2; { /* is bl2 INSIDE bl1 ? met links-rechts methode en "labda's" */ /* geeft als correct gat 1 terug */ BevPoint *bevp, *prevbevp; float min,max,vec[3],hvec1[3],hvec2[3],lab,mu; int nr, links=0,rechts=0,mode; short IsectLL(); /* neem eerste vertex van het mogelijke gat */ bevp= (BevPoint *)(bl2+1); hvec1[0]= bevp->x; hvec1[1]= bevp->y; hvec1[2]= 0.0; VECCOPY(hvec2,hvec1); hvec2[0]+=1000; /* test deze met alle edges van mogelijk omringende poly */ /* tel aantal overgangen links en rechts */ bevp= (BevPoint *)(bl1+1); nr= bl1->nr; prevbevp= bevp+(nr-1); while(nr--) { min= prevbevp->y; max= bevp->y; if(maxy; } if(min!=max) { if(min<=hvec1[1] && max>=hvec1[1]) { /* er is een overgang, snijpunt berekenen */ mode= IsectLL(&(prevbevp->x),&(bevp->x),hvec1,hvec2,0,1,&lab,&mu,vec); /* als lab==0.0 of lab==1.0 dan snijdt de edge exact de overgang * alleen toestaan voor lab= 1.0 (of andersom, maakt niet uit) */ if(mode>=0 && lab!=0.0) { if(vec[0]left > x2->left ) return 1; else if( x1->left < x2->left) return -1; return 0; } /* deze kan niet zomaar door fatan2 vervangen worden, maar waarom? */ void calc_bevel_sin_cos(x1, y1, x2, y2, sin, cos) float x1, y1, x2, y2, *sin, *cos; { float t01, t02, x3, y3; t01= fsqrt(x1*x1+y1*y1); t02= fsqrt(x2*x2+y2*y2); if(t01==0.0) t01= 1.0; if(t02==0.0) t02= 1.0; x1/=t01; y1/=t01; x2/=t02; y2/=t02; t02= x1*x2+y1*y2; if(fabs(t02)>=1.0) t02= .5*M_PI; else t02= (facos(t02))/2.0; t02= fsin(t02); if(t02==0.0) t02= 1.0; x3= x1-x2; y3= y1-y2; if(x3==0 && y3==0) { /* printf("x3 en y3 nul \n"); */ x3= y1; y3= -x1; } else { t01= fsqrt(x3*x3+y3*y3); x3/=t01; y3/=t01; } *sin= -y3/t02; *cos= x3/t02; } void alfa_bezpart(BezTriple *prevbezt, BezTriple *bezt, Nurb *nu, float *data_a) { BezTriple *pprev, *next, *last; float fac, dfac, t[4]; int a; last= nu->bezt+(nu->pntsu-1); /* een punt terug */ if(prevbezt==nu->bezt) { if(nu->flagu & 1) pprev= last; else pprev= prevbezt; } else pprev= prevbezt-1; /* een punt verder */ if(bezt==last) { if(nu->flagu & 1) next= nu->bezt; else next= bezt; } else next= bezt+1; fac= 0.0; dfac= 1.0/(float)nu->resolu; for(a=0; aresolu; a++, fac+= dfac) { set_four_ipo(fac, t, KEY_BSPLINE); data_a[a]= t[0]*pprev->alfa + t[1]*prevbezt->alfa + t[2]*bezt->alfa + t[3]*next->alfa; } } void makeBevelList(Object *ob) { /* - alle curves omzetten in poly's, met aangegeven resol en vlaggen voor dubbele punten - eventueel intelligent punten verwijderen (geval Nurb) - scheiden in verschillende blokken met Boundbox - Autogat detectie */ Curve *cu; Nurb *nu; BezTriple *bezt, *prevbezt; BPoint *bp; BevList *bl, *blnew, *blnext; BevPoint *bevp, *bevp2, *bevp1, *bevp0; float *fp, *data, *data_a, *v1, *v2, min, inp, x1, x2, y1, y2, vec[3]; struct bevelsort *sortdata, *sd, *sd1; int a, b, len, nr, poly; /* deze fie moet object hebben in verband met tflag en upflag */ cu= ob->data; /* STAP 1: POLY'S MAKEN */ freelistN(&(cu->bev)); if(ob==G.obedit) nu= editNurb.first; else nu= cu->nurb.first; while(nu) { if(nu->pntsu>1) { if((nu->type & 7)==CU_POLY) { len= nu->pntsu; bl= callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList"); addtail(&(cu->bev), bl); if(nu->flagu & 1) bl->poly= 0; else bl->poly= -1; bl->nr= len; bl->flag= 0; bevp= (BevPoint *)(bl+1); bp= nu->bp; while(len--) { bevp->x= bp->vec[0]; bevp->y= bp->vec[1]; bevp->z= bp->vec[2]; bevp->alfa= bp->alfa; bevp->f1= 1; bevp++; bp++; } } else if((nu->type & 7)==CU_BEZIER) { len= nu->resolu*(nu->pntsu+ (nu->flagu & 1) -1)+1; /* voor laatste punt niet cyclic */ bl= callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList"); addtail(&(cu->bev), bl); if(nu->flagu & 1) bl->poly= 0; else bl->poly= -1; bevp= (BevPoint *)(bl+1); a= nu->pntsu-1; bezt= nu->bezt; if(nu->flagu & 1) { a++; prevbezt= nu->bezt+(nu->pntsu-1); } else { prevbezt= bezt; bezt++; } data= mallocN(12*(nu->resolu+1), "makeBevelList2"); data_a= callocN(4*(nu->resolu+1), "data_a"); while(a--) { if(prevbezt->h2==HD_VECT && bezt->h1==HD_VECT) { bevp->x= prevbezt->vec[1][0]; bevp->y= prevbezt->vec[1][1]; bevp->z= prevbezt->vec[1][2]; bevp->alfa= prevbezt->alfa; bevp->f1= 1; bevp->f2= 0; bevp++; bl->nr++; bl->flag= 1; } else { v1= prevbezt->vec[1]; v2= bezt->vec[0]; /* altijd alle drie doen: anders blijft data hangen */ maakbez(v1[0], v1[3], v2[0], v2[3], data, nu->resolu); maakbez(v1[1], v1[4], v2[1], v2[4], data+1, nu->resolu); maakbez(v1[2], v1[5], v2[2], v2[5], data+2, nu->resolu); if((nu->type & CU_2D)==0) { if(cu->flag & CU_3D) { alfa_bezpart(prevbezt, bezt, nu, data_a); } } /* met handlecodes dubbele punten aangeven */ if(prevbezt->h1==prevbezt->h2) { if(prevbezt->h1==0 || prevbezt->h1==HD_VECT) bevp->f1= 1; } else { if(prevbezt->h1==0 || prevbezt->h1==HD_VECT) bevp->f1= 1; else if(prevbezt->h2==0 || prevbezt->h2==HD_VECT) bevp->f1= 1; } v1= data; v2= data_a; nr= nu->resolu; while(nr--) { bevp->x= v1[0]; bevp->y= v1[1]; bevp->z= v1[2]; bevp->alfa= v2[0]; bevp++; v1+=3; v2++; } bl->nr+= nu->resolu; } prevbezt= bezt; bezt++; } freeN(data); freeN(data_a); if((nu->flagu & 1)==0) { /* niet cyclic: endpoint */ bevp->x= prevbezt->vec[1][0]; bevp->y= prevbezt->vec[1][1]; bevp->z= prevbezt->vec[1][2]; bl->nr++; } } else if((nu->type & 7)==CU_NURBS) { if(nu->pntsv==1) { len= nu->resolu*nu->pntsu; bl= mallocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList3"); addtail(&(cu->bev), bl); bl->nr= len; bl->flag= 0; if(nu->flagu & 1) bl->poly= 0; else bl->poly= -1; bevp= (BevPoint *)(bl+1); data= callocN(16*len, "makeBevelList4"); /* moet op nul staan */ makeNurbcurve(nu, data, 4); v1= data; while(len--) { bevp->x= v1[0]; bevp->y= v1[1]; bevp->z= v1[2]; bevp->alfa= v1[3]; bevp->f1= bevp->f2= 0; bevp++; v1+=4; } freeN(data); } } } nu= nu->next; } /* STAP 2: DUBBELE PUNTEN EN AUTOMATISCHE RESOLUTIE, DATABLOKKEN VERKLEINEN */ bl= cu->bev.first; while(bl) { nr= bl->nr; bevp1= (BevPoint *)(bl+1); bevp0= bevp1+(nr-1); nr--; while(nr--) { if( fabs(bevp0->x-bevp1->x)<0.00001 ) { if( fabs(bevp0->y-bevp1->y)<0.00001 ) { if( fabs(bevp0->z-bevp1->z)<0.00001 ) { bevp0->f2= 1; bl->flag++; } } } bevp0= bevp1; bevp1++; } bl= bl->next; } bl= cu->bev.first; while(bl) { blnext= bl->next; if(bl->flag) { nr= bl->nr- bl->flag+1; /* +1 want vectorbezier zet ook flag */ blnew= mallocN(sizeof(BevList)+nr*sizeof(BevPoint), "makeBevelList"); memcpy(blnew, bl, sizeof(BevList)); blnew->nr= 0; remlink(&(cu->bev), bl); insertlinkbefore(&(cu->bev),blnext,blnew); /* zodat bevlijst met nurblijst gelijk loopt */ bevp0= (BevPoint *)(bl+1); bevp1= (BevPoint *)(blnew+1); nr= bl->nr; while(nr--) { if(bevp0->f2==0) { memcpy(bevp1, bevp0, sizeof(BevPoint)); bevp1++; blnew->nr++; } bevp0++; } freeN(bl); blnew->flag= 0; } bl= blnext; } /* STAP 3: POLY'S TELLEN EN AUTOGAT */ bl= cu->bev.first; poly= 0; while(bl) { if(bl->poly>=0) { poly++; bl->poly= poly; bl->gat= 0; } bl= bl->next; } /* meest linkse punten vinden, tevens richting testen */ if(poly>0) { sd= sortdata= mallocN(sizeof(struct bevelsort)*poly, "makeBevelList5"); bl= cu->bev.first; while(bl) { if(bl->poly>0) { min= 300000.0; bevp= (BevPoint *)(bl+1); nr= bl->nr; while(nr--) { if(min>bevp->x) { min= bevp->x; bevp1= bevp; } bevp++; } sd->bl= bl; sd->left= min; bevp= (BevPoint *)(bl+1); if(bevp1== bevp) bevp0= bevp+ (bl->nr-1); else bevp0= bevp1-1; bevp= bevp+ (bl->nr-1); if(bevp1== bevp) bevp2= (BevPoint *)(bl+1); else bevp2= bevp1+1; inp= (bevp1->x- bevp0->x)*(bevp0->y- bevp2->y) +(bevp0->y- bevp1->y)*(bevp0->x- bevp2->x); if(inp>0.0) sd->dir= 1; else sd->dir= 0; sd++; } bl= bl->next; } qsort(sortdata,poly,sizeof(struct bevelsort), (void *)vergxcobev); sd= sortdata+1; for(a=1; abl; /* is bl een gat? */ sd1= sortdata+ (a-1); for(b=a-1; b>=0; b--, sd1--) { /* alle polys links ervan */ if(bevelinside(sd1->bl, bl)) { bl->gat= 1- sd1->bl->gat; break; } } } /* draairichting */ if((cu->flag & CU_3D)==0) { sd= sortdata; for(a=0; abl->gat==sd->dir) { bl= sd->bl; bevp1= (BevPoint *)(bl+1); bevp2= bevp1+ (bl->nr-1); nr= bl->nr/2; while(nr--) { SWAP(BevPoint, *bevp1, *bevp2); bevp1++; bevp2--; } } } } freeN(sortdata); } /* STAP 4: COSINUSSEN */ bl= cu->bev.first; while(bl) { if(bl->nr==2) { /* 2 pnt, apart afhandelen: KAN DAT NIET AFGESCHAFT? */ bevp2= (BevPoint *)(bl+1); bevp1= bevp2+1; x1= bevp1->x- bevp2->x; y1= bevp1->y- bevp2->y; calc_bevel_sin_cos(x1, y1, -x1, -y1, &(bevp1->sin), &(bevp1->cos)); bevp2->sin= bevp1->sin; bevp2->cos= bevp1->cos; if(cu->flag & CU_3D) { /* 3D */ float *quat, q[4]; vec[0]= bevp1->x - bevp2->x; vec[1]= bevp1->y - bevp2->y; vec[2]= bevp1->z - bevp2->z; quat= vectoquat(vec, ob->trackflag, ob->upflag); Normalise(vec); q[0]= fcos(0.5*bevp1->alfa); x1= fsin(0.5*bevp1->alfa); q[1]= x1*vec[0]; q[2]= x1*vec[1]; q[3]= x1*vec[2]; QuatMul(quat, q, quat); QuatToMat3(quat, bevp1->mat); Mat3CpyMat3(bevp2->mat, bevp1->mat); } } else if(bl->nr>2) { bevp2= (BevPoint *)(bl+1); bevp1= bevp2+(bl->nr-1); bevp0= bevp1-1; nr= bl->nr; while(nr--) { if(cu->flag & CU_3D) { /* 3D */ float *quat, q[4]; vec[0]= bevp2->x - bevp0->x; vec[1]= bevp2->y - bevp0->y; vec[2]= bevp2->z - bevp0->z; quat= vectoquat(vec, ob->trackflag, ob->upflag); Normalise(vec); q[0]= fcos(0.5*bevp1->alfa); x1= fsin(0.5*bevp1->alfa); q[1]= x1*vec[0]; q[2]= x1*vec[1]; q[3]= x1*vec[2]; QuatMul(quat, q, quat); QuatToMat3(quat, bevp1->mat); } x1= bevp1->x- bevp0->x; x2= bevp1->x- bevp2->x; y1= bevp1->y- bevp0->y; y2= bevp1->y- bevp2->y; calc_bevel_sin_cos(x1, y1, x2, y2, &(bevp1->sin), &(bevp1->cos)); bevp0= bevp1; bevp1= bevp2; bevp2++; } /* niet cyclic gevallen corrigeren */ if(bl->poly== -1) { if(bl->nr>2) { bevp= (BevPoint *)(bl+1); bevp1= bevp+1; bevp->sin= bevp1->sin; bevp->cos= bevp1->cos; Mat3CpyMat3(bevp->mat, bevp1->mat); bevp= (BevPoint *)(bl+1); bevp+= (bl->nr-1); bevp1= bevp-1; bevp->sin= bevp1->sin; bevp->cos= bevp1->cos; Mat3CpyMat3(bevp->mat, bevp1->mat); } } } bl= bl->next; } } /* ****************** HANDLES ************** */ /* * handlecodes: * 1: niets, 1:auto, 2:vector, 3:aligned */ void calchandleNurb(bezt,prev, next, mode) BezTriple *bezt, *prev, *next; { float *p1,*p2,*p3,pt[3]; float dx1,dy1,dz1,dx,dy,dz,vx,vy,vz,len,len1,len2; if(bezt->h1==0 && bezt->h2==0) return; p2= bezt->vec[1]; if(prev==0) { p3= next->vec[1]; pt[0]= 2*p2[0]- p3[0]; pt[1]= 2*p2[1]- p3[1]; pt[2]= 2*p2[2]- p3[2]; p1= pt; } else p1= prev->vec[1]; if(next==0) { pt[0]= 2*p2[0]- p1[0]; pt[1]= 2*p2[1]- p1[1]; pt[2]= 2*p2[2]- p1[2]; p3= pt; } else p3= next->vec[1]; if(mode && bezt->h1==HD_AUTO && prev) { dx= p2[0] - (p1[0]+p1[3])/2.0; dy= p2[1] - (p1[1]+p1[4])/2.0; dz= p2[2] - (p1[2]+p1[5])/2.0; } else { dx= p2[0]- p1[0]; dy= p2[1]- p1[1]; dz= p2[2]- p1[2]; } len1= fsqrt(dx*dx+dy*dy+dz*dz); if(mode && bezt->h2==HD_AUTO && next) { dx1= (p3[0]+p3[-3])/2.0 - p2[0]; dy1= (p3[1]+p3[-2])/2.0 - p2[1]; dz1= (p3[2]+p3[-1])/2.0 - p2[2]; } else { dx1= p3[0]- p2[0]; dy1= p3[1]- p2[1]; dz1= p3[2]- p2[2]; } len2= fsqrt(dx1*dx1+dy1*dy1+dz1*dz1); if(len1==0.0) len1=1.0; if(len2==0.0) len2=1.0; if(bezt->h1==HD_AUTO || bezt->h2==HD_AUTO) { /* auto */ vx= dx1/len2 + dx/len1; vy= dy1/len2 + dy/len1; vz= dz1/len2 + dz/len1; len= 2.71*fsqrt(vx*vx + vy*vy + vz*vz); if(len!=0.0) { if(len1>5.0*len2) len1= 5.0*len2; if(len2>5.0*len1) len2= 5.0*len1; if(bezt->h1==HD_AUTO) { len1/=len; *(p2-3)= *p2-vx*len1; *(p2-2)= *(p2+1)-vy*len1; *(p2-1)= *(p2+2)-vz*len1; } if(bezt->h2==HD_AUTO) { len2/=len; *(p2+3)= *p2+vx*len2; *(p2+4)= *(p2+1)+vy*len2; *(p2+5)= *(p2+2)+vz*len2; } } } if(bezt->h1==HD_VECT) { /* vector */ dx/=3.0; dy/=3.0; dz/=3.0; *(p2-3)= *p2-dx; *(p2-2)= *(p2+1)-dy; *(p2-1)= *(p2+2)-dz; } if(bezt->h2==HD_VECT) { dx1/=3.0; dy1/=3.0; dz1/=3.0; *(p2+3)= *p2+dx1; *(p2+4)= *(p2+1)+dy1; *(p2+5)= *(p2+2)+dz1; } len2= VecLenf(p2, p2+3); len1= VecLenf(p2, p2-3); if(len1==0.0) len1=1.0; if(len2==0.0) len2=1.0; if(bezt->f1 & 1) { /* volgorde van berekenen */ if(bezt->h2==HD_ALIGN) { /* aligned */ len= len2/len1; p2[3]= p2[0]+len*(p2[0]-p2[-3]); p2[4]= p2[1]+len*(p2[1]-p2[-2]); p2[5]= p2[2]+len*(p2[2]-p2[-1]); } if(bezt->h1==HD_ALIGN) { len= len1/len2; p2[-3]= p2[0]+len*(p2[0]-p2[3]); p2[-2]= p2[1]+len*(p2[1]-p2[4]); p2[-1]= p2[2]+len*(p2[2]-p2[5]); } } else { if(bezt->h1==HD_ALIGN) { len= len1/len2; p2[-3]= p2[0]+len*(p2[0]-p2[3]); p2[-2]= p2[1]+len*(p2[1]-p2[4]); p2[-1]= p2[2]+len*(p2[2]-p2[5]); } if(bezt->h2==HD_ALIGN) { /* aligned */ len= len2/len1; p2[3]= p2[0]+len*(p2[0]-p2[-3]); p2[4]= p2[1]+len*(p2[1]-p2[-2]); p2[5]= p2[2]+len*(p2[2]-p2[-1]); } } } void calchandlesNurb(nu) /* wel eerst (zonodig) de handlevlaggen zetten */ Nurb *nu; { BezTriple *bezt, *prev, *next; short a; if((nu->type & 7)!=1) return; if(nu->pntsu<2) return; a= nu->pntsu; bezt= nu->bezt; if(nu->flagu & 1) prev= bezt+(a-1); else prev= 0; next= bezt+1; while(a--) { calchandleNurb(bezt, prev, next, 0); prev= bezt; if(a==1) { if(nu->flagu & 1) next= nu->bezt; else next= 0; } else next++; bezt++; } } void testhandlesNurb(nu) Nurb *nu; { /* Te gebruiken als er iets an de handles is veranderd. * Loopt alle BezTriples af met de volgende regels: * FASE 1: types veranderen? * Autocalchandles: worden ligned als NOT(000 || 111) * Vectorhandles worden 'niets' als (selected en andere niet) * FASE 2: handles herbereken */ BezTriple *bezt; short flag, a; if((nu->type & 7)!=CU_BEZIER) return; bezt= nu->bezt; a= nu->pntsu; while(a--) { flag= 0; if(bezt->f1 & 1) flag++; if(bezt->f2 & 1) flag += 2; if(bezt->f3 & 1) flag += 4; if( !(flag==0 || flag==7) ) { if(bezt->h1==HD_AUTO) { /* auto */ bezt->h1= HD_ALIGN; } if(bezt->h2==HD_AUTO) { /* auto */ bezt->h2= HD_ALIGN; } if(bezt->h1==HD_VECT) { /* vector */ if(flag < 4) bezt->h1= 0; } if(bezt->h2==HD_VECT) { /* vector */ if( flag > 3) bezt->h2= 0; } } bezt++; } calchandlesNurb(nu); } void autocalchandlesNurb(Nurb *nu, int flag) { /* Kijkt naar de coordinaten van de handles en berekent de soort */ BezTriple *bezt2, *bezt1, *bezt0; int i, align, leftsmall, rightsmall; if(nu==0 || nu->bezt==0) return; bezt2 = nu->bezt; bezt1 = bezt2 + (nu->pntsu-1); bezt0 = bezt1 - 1; i = nu->pntsu; while(i--) { align= leftsmall= rightsmall= 0; /* linker handle: */ if(flag==0 || (bezt1->f1 & flag) ) { bezt1->h1= 0; /* afstand te klein: vectorhandle */ if( VecLenf( bezt1->vec[1], bezt0->vec[1] ) < 0.0001) { bezt1->h1= HD_VECT; leftsmall= 1; } else { /* aligned handle? */ if(DistVL2Dfl(bezt1->vec[1], bezt1->vec[0], bezt1->vec[2]) < 0.0001) { align= 1; bezt1->h1= HD_ALIGN; } /* of toch vector handle? */ if(DistVL2Dfl(bezt1->vec[0], bezt1->vec[1], bezt0->vec[1]) < 0.0001) bezt1->h1= HD_VECT; } } /* rechter handle: */ if(flag==0 || (bezt1->f3 & flag) ) { bezt1->h2= 0; /* afstand te klein: vectorhandle */ if( VecLenf( bezt1->vec[1], bezt2->vec[1] ) < 0.0001) { bezt1->h2= HD_VECT; rightsmall= 1; } else { /* aligned handle? */ if(align) bezt1->h2= HD_ALIGN; /* of toch vector handle? */ if(DistVL2Dfl(bezt1->vec[2], bezt1->vec[1], bezt2->vec[1]) < 0.0001) bezt1->h2= HD_VECT; } } if(leftsmall && bezt1->h2==HD_ALIGN) bezt1->h2= 0; if(rightsmall && bezt1->h1==HD_ALIGN) bezt1->h1= 0; /* onzalige combinatie: */ if(bezt1->h1==HD_ALIGN && bezt1->h2==HD_VECT) bezt1->h1= 0; if(bezt1->h2==HD_ALIGN && bezt1->h1==HD_VECT) bezt1->h2= 0; bezt0= bezt1; bezt1= bezt2; bezt2++; } calchandlesNurb(nu); } void autocalchandlesNurb_all(flag) int flag; { Nurb *nu; nu= editNurb.first; while(nu) { autocalchandlesNurb(nu, flag); nu= nu->next; } } void sethandlesNurb(code) short code; { /* code==1: set autohandle */ /* code==2: set vectorhandle */ /* als code==3 (HD_ALIGN) toggelt het, vectorhandles worden HD_FREE */ Nurb *nu; BezTriple *bezt; short a, ok=0; if(code==1 || code==2) { nu= editNurb.first; while(nu) { if( (nu->type & 7)==1) { bezt= nu->bezt; a= nu->pntsu; while(a--) { if(bezt->f1 || bezt->f3) { if(bezt->f1) bezt->h1= code; if(bezt->f3) bezt->h2= code; if(bezt->h1!=bezt->h2) { if ELEM(bezt->h1, HD_ALIGN, HD_AUTO) bezt->h1= HD_FREE; if ELEM(bezt->h2, HD_ALIGN, HD_AUTO) bezt->h2= HD_FREE; } } bezt++; } calchandlesNurb(nu); } nu= nu->next; } } else { /* is er 1 handle NIET vrij: alles vrijmaken, else ALIGNED maken */ nu= editNurb.first; while(nu) { if( (nu->type & 7)==1) { bezt= nu->bezt; a= nu->pntsu; while(a--) { if(bezt->f1 && bezt->h1) ok= 1; if(bezt->f3 && bezt->h2) ok= 1; if(ok) break; bezt++; } } nu= nu->next; } if(ok) ok= HD_FREE; else ok= HD_ALIGN; nu= editNurb.first; while(nu) { if( (nu->type & 7)==1) { bezt= nu->bezt; a= nu->pntsu; while(a--) { if(bezt->f1) bezt->h1= ok; if(bezt->f3 ) bezt->h2= ok; bezt++; } calchandlesNurb(nu); } nu= nu->next; } } }