dune-istl  2.2.0
Modules | Files | Classes | Typedefs | Enumerations | Enumerator | Functions | Variables
Sparse Matrix and Vector classes
Iterative Solvers Template Library (ISTL)

Matrix and Vector classes that support a block recursive structure capable of representing the natural structure from Finite Element discretisations. More...

Collaboration diagram for Sparse Matrix and Vector classes:

Modules

 Block Recursive Iterative Kernels
 IO for matrices and vectors.
 Provides methods for reading and writing matrices and vectors in various formats.

Files

file  matrixmatrix.hh
 provides functions for sparse matrix matrix multiplication.
file  matrixutils.hh
 Some handy generic functions for ISTL matrices.

Classes

class  Dune::BCRSMatrix< B, A >
 A sparse block matrix with compressed row storage. More...
class  Dune::BDMatrix< B, A >
 A block-diagonal matrix. More...
class  Dune::BTDMatrix< B, A >
 A block-tridiagonal matrix. More...
class  Dune::BlockVector< B, A >
 A vector of blocks with memory management. More...
class  Dune::Matrix< T, A >
 A generic dynamic dense matrix. More...
struct  Dune::MatMultMatResult< M1, M2 >
 Helper TMP to get the result type of a sparse matrix matrix multiplication ( $C=A*B$) More...
struct  Dune::MatMultMatResult< FieldMatrix< T, n, k >, FieldMatrix< T, k, m > >
struct  Dune::MatMultMatResult< BCRSMatrix< FieldMatrix< T, n, k >, A >, BCRSMatrix< FieldMatrix< T, k, m >, A1 > >
struct  Dune::CheckIfDiagonalPresent< Matrix, blocklevel, l >
 Check whether the a matrix has diagonal values on blocklevel recursion levels. More...
struct  Dune::CheckIfDiagonalPresent< Matrix, 0, l >
struct  Dune::CheckIfDiagonalPresent< MultiTypeBlockMatrix< T1, T2, T3, T4, T5, T6, T7, T8, T9 >, blocklevel, l >
class  Dune::VariableBlockVector< B, A >
 A Vector of blocks with different blocksizes. More...

Typedefs

typedef BCRSMatrix
< FieldMatrix< T, n, m >, A >
::CreateIterator 
Dune::SparsityPatternInitializer< T, A, n, m >::CreateIterator
typedef BCRSMatrix
< FieldMatrix< T, n, m >, A >
::size_type 
Dune::SparsityPatternInitializer< T, A, n, m >::size_type
typedef Dune::BCRSMatrix
< FieldMatrix< T, n, m >, TA > 
Dune::MatrixInitializer< transpose, T, TA, n, m >::Matrix
typedef Matrix::CreateIterator Dune::MatrixInitializer< transpose, T, TA, n, m >::CreateIterator
typedef Matrix::size_type Dune::MatrixInitializer< transpose, T, TA, n, m >::size_type
typedef Dune::BCRSMatrix
< Dune::FieldMatrix< T, n, m >
, TA > 
Dune::MatrixInitializer< 1, T, TA, n, m >::Matrix
typedef Matrix::CreateIterator Dune::MatrixInitializer< 1, T, TA, n, m >::CreateIterator
typedef Matrix::size_type Dune::MatrixInitializer< 1, T, TA, n, m >::size_type
typedef BCRSMatrix
< FieldMatrix< T, n, m >, A
Dune::EntryAccumulatorFather< T, A, n, m >::Matrix
typedef Matrix::RowIterator Dune::EntryAccumulatorFather< T, A, n, m >::Row
typedef Matrix::ColIterator Dune::EntryAccumulatorFather< T, A, n, m >::Col
typedef BCRSMatrix
< FieldMatrix< T, n, m >, A
Dune::EntryAccumulator< T, A, n, m, transpose >::Matrix
typedef Matrix::size_type Dune::EntryAccumulator< T, A, n, m, transpose >::size_type
typedef BCRSMatrix
< FieldMatrix< T, n, m >, A
Dune::EntryAccumulator< T, A, n, m, 0 >::Matrix
typedef Matrix::size_type Dune::EntryAccumulator< T, A, n, m, 0 >::size_type
typedef BCRSMatrix
< FieldMatrix< T, n, m >, A
Dune::EntryAccumulator< T, A, n, m, 1 >::Matrix
typedef Matrix::size_type Dune::EntryAccumulator< T, A, n, m, 1 >::size_type
typedef BCRSMatrix
< FieldMatrix< T, n, m >, A
Dune::EntryAccumulator< T, A, n, m, 2 >::Matrix
typedef Matrix::size_type Dune::EntryAccumulator< T, A, n, m, 2 >::size_type
typedef FieldMatrix< T, n, m > Dune::MatMultMatResult< FieldMatrix< T, n, k >, FieldMatrix< T, k, m > >::type
typedef BCRSMatrix< typename
MatMultMatResult< FieldMatrix
< T, n, k >, FieldMatrix< T, k,
m > >::type, A
Dune::MatMultMatResult< BCRSMatrix< FieldMatrix< T, n, k >, A >, BCRSMatrix< FieldMatrix< T, k, m >, A1 > >::type

Enumerations

enum  { Dune::SparsityPatternInitializer< T, A, n, m >::do_break = true }
enum  { Dune::MatrixInitializer< transpose, T, TA, n, m >::do_break = true }
enum  { Dune::MatrixInitializer< 1, T, TA, n, m >::do_break = false }
enum  { Dune::EntryAccumulatorFather< T, A, n, m >::do_break = false }

Functions

template<class T , class A , class A1 , class A2 , int n, int m, int k>
void Dune::matMultTransposeMat (BCRSMatrix< FieldMatrix< T, n, k >, A > &res, const BCRSMatrix< FieldMatrix< T, n, m >, A1 > &mat, const BCRSMatrix< FieldMatrix< T, k, m >, A2 > &matt, bool tryHard=false)
 Calculate product of a sparse matrix with a transposed sparse matrices ( $C=A*B^T$).
template<class T , class A , class A1 , class A2 , int n, int m, int k>
void Dune::matMultMat (BCRSMatrix< FieldMatrix< T, n, m >, A > &res, const BCRSMatrix< FieldMatrix< T, n, k >, A1 > &mat, const BCRSMatrix< FieldMatrix< T, k, m >, A2 > &matt, bool tryHard=false)
 Calculate product of two sparse matrices ( $C=A*B$).
template<class T , class A , class A1 , class A2 , int n, int m, int k>
void Dune::transposeMatMultMat (BCRSMatrix< FieldMatrix< T, n, m >, A > &res, const BCRSMatrix< FieldMatrix< T, k, n >, A1 > &mat, const BCRSMatrix< FieldMatrix< T, k, m >, A2 > &matt, bool tryHard=false)
 Calculate product of a transposed sparse matrix with another sparse matrices ( $C=A^T*B$).
template<class M >
int Dune::countNonZeros (const M &matrix)
 Get the number of nonzero fields in the matrix.
template<class X , class Y >
Dune::Matrix< T, A >::transposedMult (const X &vec)
 Multiplication of the transposed matrix times a vector.

Variables

Matrix &   mat
Col   col

Detailed Description

Matrix and Vector classes that support a block recursive structure capable of representing the natural structure from Finite Element discretisations.

The interface of our matrices is designed according to what they represent from a mathematical point of view. The vector classes are representations of vector spaces:

The matrix classes represent linear maps $A: V \mapsto W$ from vector space $V$ to vector space $W$ the recursive block structure of the matrix rows and columns immediately follows from the recursive block structure of the vectors representing the domain and range of the mapping, respectively:


Typedef Documentation

template<class T , class A , int n, int m>
typedef Matrix::ColIterator Dune::EntryAccumulatorFather< T, A, n, m >::Col
template<class T , class A , int n, int m>
typedef BCRSMatrix<FieldMatrix<T,n,m>,A>::CreateIterator Dune::SparsityPatternInitializer< T, A, n, m >::CreateIterator
template<int transpose, class T , class TA , int n, int m>
typedef Matrix::CreateIterator Dune::MatrixInitializer< transpose, T, TA, n, m >::CreateIterator
template<class T , class TA , int n, int m>
typedef Matrix::CreateIterator Dune::MatrixInitializer< 1, T, TA, n, m >::CreateIterator
template<int transpose, class T , class TA , int n, int m>
typedef Dune::BCRSMatrix<FieldMatrix<T,n,m>,TA> Dune::MatrixInitializer< transpose, T, TA, n, m >::Matrix
template<class T , class TA , int n, int m>
typedef Dune::BCRSMatrix<Dune::FieldMatrix<T,n,m>,TA> Dune::MatrixInitializer< 1, T, TA, n, m >::Matrix
template<class T , class A , int n, int m>
typedef BCRSMatrix<FieldMatrix<T,n,m>,A> Dune::EntryAccumulatorFather< T, A, n, m >::Matrix
template<class T , class A , int n, int m, int transpose>
typedef BCRSMatrix<FieldMatrix<T,n,m>,A> Dune::EntryAccumulator< T, A, n, m, transpose >::Matrix
template<class T , class A , int n, int m>
typedef BCRSMatrix<FieldMatrix<T,n,m>,A> Dune::EntryAccumulator< T, A, n, m, 0 >::Matrix
template<class T , class A , int n, int m>
typedef BCRSMatrix<FieldMatrix<T,n,m>,A> Dune::EntryAccumulator< T, A, n, m, 1 >::Matrix
template<class T , class A , int n, int m>
typedef BCRSMatrix<FieldMatrix<T,n,m>,A> Dune::EntryAccumulator< T, A, n, m, 2 >::Matrix
template<class T , class A , int n, int m>
typedef Matrix::RowIterator Dune::EntryAccumulatorFather< T, A, n, m >::Row
template<class T , class A , int n, int m>
typedef BCRSMatrix<FieldMatrix<T,n,m>,A>::size_type Dune::SparsityPatternInitializer< T, A, n, m >::size_type
template<int transpose, class T , class TA , int n, int m>
typedef Matrix::size_type Dune::MatrixInitializer< transpose, T, TA, n, m >::size_type
template<class T , class TA , int n, int m>
typedef Matrix::size_type Dune::MatrixInitializer< 1, T, TA, n, m >::size_type
template<class T , class A , int n, int m, int transpose>
typedef Matrix::size_type Dune::EntryAccumulator< T, A, n, m, transpose >::size_type
template<class T , class A , int n, int m>
typedef Matrix::size_type Dune::EntryAccumulator< T, A, n, m, 0 >::size_type
template<class T , class A , int n, int m>
typedef Matrix::size_type Dune::EntryAccumulator< T, A, n, m, 1 >::size_type
template<class T , class A , int n, int m>
typedef Matrix::size_type Dune::EntryAccumulator< T, A, n, m, 2 >::size_type
template<typename T , int n, int k, int m>
typedef FieldMatrix<T,n,m> Dune::MatMultMatResult< FieldMatrix< T, n, k >, FieldMatrix< T, k, m > >::type
template<typename T , typename A , typename A1 , int n, int k, int m>
typedef BCRSMatrix<typename MatMultMatResult<FieldMatrix<T,n,k>, FieldMatrix<T,k,m> >::type,A> Dune::MatMultMatResult< BCRSMatrix< FieldMatrix< T, n, k >, A >, BCRSMatrix< FieldMatrix< T, k, m >, A1 > >::type

Enumeration Type Documentation

template<class T , class A , int n, int m>
anonymous enum
Enumerator:
do_break 
template<int transpose, class T , class TA , int n, int m>
anonymous enum
Enumerator:
do_break 
template<class T , class TA , int n, int m>
anonymous enum
Enumerator:
do_break 
template<class T , class A , int n, int m>
anonymous enum
Enumerator:
do_break 

Function Documentation

template<class M >
int Dune::countNonZeros ( const M &  matrix)
inline

Get the number of nonzero fields in the matrix.

This is not the number of nonzero blocks, but the number of non zero scalar entries (on blocklevel 1) if the matrix is viewed as a flat matrix.

For FieldMatrix this is simply the number of columns times the number of rows, for a BCRSMatrix<FieldMatrix<K,n,m>> this is the number of nonzero blocks time n*m.

References count.

Referenced by Dune::Amg::MatrixHierarchy< M, PI, A >::build(), and Dune::writeMatrixMarket().

template<class T , class A , class A1 , class A2 , int n, int m, int k>
void Dune::matMultMat ( BCRSMatrix< FieldMatrix< T, n, m >, A > &  res,
const BCRSMatrix< FieldMatrix< T, n, k >, A1 > &  mat,
const BCRSMatrix< FieldMatrix< T, k, m >, A2 > &  matt,
bool  tryHard = false 
)

Calculate product of two sparse matrices ( $C=A*B$).

Parameters:
resMatrix for the result of the computation.
matMatrix A.
mattMatrix B.
tryHardignored

References mat.

template<class T , class A , class A1 , class A2 , int n, int m, int k>
void Dune::matMultTransposeMat ( BCRSMatrix< FieldMatrix< T, n, k >, A > &  res,
const BCRSMatrix< FieldMatrix< T, n, m >, A1 > &  mat,
const BCRSMatrix< FieldMatrix< T, k, m >, A2 > &  matt,
bool  tryHard = false 
)

Calculate product of a sparse matrix with a transposed sparse matrices ( $C=A*B^T$).

Parameters:
resMatrix for the result of the computation.
matMatrix A.
mattMatrix B, which will be transposed before the multiplication.
tryHardignored

References mat.

template<class T , class A >
template<class X , class Y >
Y Dune::Matrix< T, A >::transposedMult ( const X &  vec)
inline

Multiplication of the transposed matrix times a vector.

This method is deprecated. Use method mtv instead.

Deprecated:
template<class T , class A , class A1 , class A2 , int n, int m, int k>
void Dune::transposeMatMultMat ( BCRSMatrix< FieldMatrix< T, n, m >, A > &  res,
const BCRSMatrix< FieldMatrix< T, k, n >, A1 > &  mat,
const BCRSMatrix< FieldMatrix< T, k, m >, A2 > &  matt,
bool  tryHard = false 
)

Calculate product of a transposed sparse matrix with another sparse matrices ( $C=A^T*B$).

Parameters:
resMatrix for the result of the computation.
matMatrix A, which will be transposed before the multiplication.
mattMatrix B.
tryHardignored

References mat.


Variable Documentation

Matrix& A
Col col
template<class T , class A , int n, int m>
Col Dune::EntryAccumulatorFather< T, A, n, m >::col
protected
std::size_t count
Matrix& mat
template<class T , class A , int n, int m>
Matrix& Dune::EntryAccumulatorFather< T, A, n, m >::mat
protected
Row row
CreateIterator rowiter