eSet structures, August 2005

VJ Carey <stvjc@channing.harvard.edu>

November 17, 2005

Contents
1__Preliminaries| 1
2__Introduction| 2
3__Annotated dataset class| 4
4 xample 4
[> Validity conditions| 6
6 Environments for assay results| 8
[7 phenoData metadatal 9
[8 A suggestion for a basic history mechanism 10
8.1 Open question|. 11
B.1.1 DSeth’s comments 11
9__Session Information 12

1 Preliminaries

There is a need to expand the capabilities of exprSet, the primary multiassay container
class in Biobase:

e we should have the ability to have multiple matrices of assay results, where rows
correspond to reporters, columns correspond to samples

e we should have the ability to have fairly rich metadata content for both samples
and reporters

stvjc@channing.harvard.edu

e we should have the ability to make use of pass-by-reference performance with large
assay data structures

We are open to other concerns about container design and would like developers to
consider the following questions:

e what sorts of reporter data structures and functionalities would be of interest? Use
cases would be helpful

e are there compelling concepts of auditability of these structures that you would
like to address? I added a character slot ‘history’ in which one can place a vector
of strings, capturing for example results of match.call()

e how should we handle geneNames, reporterNames, sampleNames data? Currently
I have independent slots for reporterNames and sampleNames, but this informa-
tion could be stored as rownames/colnames of the reporterInfo and phenoData
structures.

Please discuss openly on the bioc-devel list.

2 Introduction

The high-throughput information that we wish to work with has the following general
structure.

e There are N samples that have been assayed. Sample-level metadata are collected
roughly uniformly for all samples, and take the form of g-vectors of mixed contin-
uous and categorical variables for each sample.

e There are G reporters on which assay values are obtained. G can be as large as 10”.
Reporter names come from a vocabulary that can be translated into information
about biological systems.

e There are various forms of experiment-level metadata that are collected.

In Bioconductor 1.6, the exprSet class managed information of the type described
above, with some restrictions. In an exprSet instance, the exprs slot is intended to hold
a G x N matrix of numerical assay results. An se.exprs slot has the same dimensions
and structure. The column names and row names of the exprs slot provide sample
identification and reporter identification. Experiment-level metadata can be contained
in slots called description, annotation and notes. Sample level data are collected in
a structure of class phenoData. This has a slot called pData containing an N x ¢ data
frame, a list of varLabels that map attribute names to longer descriptive labels, and
a data frame called varMetadata which can capture variable-level information such as
units of measurement.

The eSet class is a provisional implementation of an extended container concept
The current definition is:

> library(Biobase)

> getClass("eSet")

Slots:

Name: assayData sampleNames reporterNames
Class: listOrEnv character character
Name: description notes annotation
Class: MIAME character character
Name: history reporterInfo phenoData
Class: character data.frameOrNULL phenoData

Extends: "annotatedDataset"
> package.version("Biobase")
[1] "1.9.2"

The listOrEnv virtual class confers flexibility on the assay data container component.

> getClass("1listOrEnv")

Extended class definition ("ClassUnionRepresentation")
Virtual Class

No Slots, prototype of class "NULL"

Known Subclasses: "list", "environment"

The assayData slot can be occupied by either a list or an environment. This allows
accommodation of multiple G' x N matrices representing assay data. Environments can

be used to obtain pass-by-reference semantics. Both list and environment representations
for assay data relax structural restrictions that exist with an exprSet instance.

3 Annotated dataset class

One superclass from which eSet inherits is annotatedDataset.

> getClass("annotatedDataset")

Virtual Class

Slots:

Name: reporterInfo phenoData
Class: data.frameOrNULL phenoData
Known Subclasses: "eSet", "exprSet"

A variety of operators such as [[and $ are defined for objects of classes that extend
annotatedDataset. See the help page on this class.
A key formal container conferred by annotatedDataset inheritance is phenoData.

> getClass ("phenoData")

Slots:
Name: pData varLabels varMetadata
Class: data.frame list data.frame

The phenoData slots are pData, the N x ¢ data frame holding sample level non-assay
information, varLabels, a named list of ¢ variable labels, and varMetadata, a data frame
of arbitrary dimensions that provides additional information on phenoData variables.
See section [7] below for an example.

In addition to the phenoData container, we now allow a reporterInfo slot to hold
a data.frame of G rows with metadata about reporters. The intention is that columns
in reporterInfo will likely hold factors to facilitate splitting up the reporter set, into
control and active reporters, for example.

4 Example

We include a coercion tool, and can thus use the Golub data to illustrate. We will add
contrived information on standard errors and presence calls to illustrate the flexibility.

> data(golubMergeSub)
> gmes <- as(golubMergeSub, "eSet")
> assayData(gmes) [["se.exprs"]] <- runif (length(exprs(gmes)),

1.5, 2.5) * assayData(gmes)[["exprs"]]

ratpred <- (assayData(gmes)[["exprs"]]/assayData(gmes)[["se.exprs"]] >
2)

assayData(gmes) [["presence"]] <- ratpred

gmes

vV VvV + Vv +

instance of eSet

assayData component is of class list

dimensions of the assayData components:
exXprs se.exprs presence

nrow 1000 1000 1000

ncol 72 72 72
phenoData object with 11 variables and 72 cases
varLabels

Samples: Sample index
ALL.AML: Factor, indicating ALL or AML
BM.PB: Factor, sample from marrow or peripheral blood
T.B.cell: Factor, T cell or B cell leuk.
FAB: Factor, FAB classification
Date: Date sample obtained
Gender: Factor, gender of patient
pctBlasts: pct of cells that are blasts
Treatment: response to treatment
PS: Prediction strength
Source: Source of sample
first reporterNames:
[1] "L37378_at" "L37792_at" "L37868_s_at" "L37882_at"
[56] "L37936_at"
first sampleNames:
[1] l1391| II4OH ll42l| ll47l| ll48l|

Note that the show method is slightly elaborated to cope with the added potential
content of the assayData component. The exprs method still works, provided that an
element of the assayData slot has name exprs.

> dim(exprs(gmes))
[1] 1000 72

The use of exprs as an accessor is permitted but does a bit more than the analogous
accessor for exprSet objects. Assay data are, in this example, contained in a named list
of matrices.

> dim(assayData (gmes) [["exprs"]])

[1] 1000 72

Note the interpretation of dim:

> dim(gmes)

eXprs se.exprs presence
nrow 1000 1000 1000
ncol 72 72 72

Subsetting operations perform as expected:

> gmes[1:10, 1:10]

instance of eSet

assayData component is of class list

dimensions of the assayData components:
exXprs se.exprs presence

nrow 10 10 10

ncol 10 10 10
phenoData object with 11 variables and 10 cases
varLabels

Samples: Sample index
ALL.AML: Factor, indicating ALL or AML
BM.PB: Factor, sample from marrow or peripheral blood
T.B.cell: Factor, T cell or B cell leuk.
FAB: Factor, FAB classification
Date: Date sample obtained
Gender: Factor, gender of patient
pctBlasts: pct of cells that are blasts
Treatment: response to treatment
PS: Prediction strength
Source: Source of sample
first reporterNames:
[1] "L37378_at" "L37792_at" "L37868_s_at" "L37882_at"
[6] "L37936_at"
first sampleNames:
[1] l1391| II4OH ll42!| ll47l| ll48l|

5 Validity conditions

> getValidity(getClass("eSet"))

function (object)
validEset (object)
<environment: namespace:Biobase>

I would like to have a constraint on reporterNames length but more discussion is needed.
Let’s illustrate the use of the reporterInfo construct. Suppose we wish to make it
convenient to bind the gene symbols with the data.

> data(bbsym)

> gs <- unlist(mget (reporterNames (gmes), bbsym))
> gs <- data.frame(name = gs)

> rownames (gs) <- reporterNames (gmes)

> reporterInfo(gmes) <- gs

Now let’s restrict our eSet to those reporters for which symbols contain the substring
NFK.

> gmes[grep ("NFK", as.character (reporterInfo(gmes)$name)),
+]

instance of eSet

assayData component is of class list

dimensions of the assayData components:
exXprs se.exprs presence

nrow 3 3 3

ncol 72 72 72
phenoData object with 11 variables and 72 cases
varLabels

Samples: Sample index
ALL.AML: Factor, indicating ALL or AML
BM.PB: Factor, sample from marrow or peripheral blood
T.B.cell: Factor, T cell or B cell leuk.
FAB: Factor, FAB classification
Date: Date sample obtained
Gender: Factor, gender of patient
pctBlasts: pct of cells that are blasts
Treatment: response to treatment
PS: Prediction strength
Source: Source of sample

first reporterNames:

[1] "L40407_at" "M58603_at" "M69043_at"

first sampleNames:

[1] "39" "40" "42"

6 Environments for assay results

It is permissible to employ an environment containing matrices as the assay data con-
tainer. Here we construct the eSet instance explicitly, notice the direct containment of
sample names and reporter names in slots.

ee <- new.env()

assign("exprs", exprs(golubMergeSub), ee)

gme <- new("eSet", assayData = ee, phenoData = phenoData(golubMergeSub),
sampleNames = sampleNames (golubMergeSub),
reporterNames = geneNames (golubMergeSub))

vV + + Vv vV

gme

instance of eSet
assayData component is of class environment
dimensions of the assayData components:

exprs
nrow 1000
ncol 72
phenoData object with 11 variables and 72 cases
varLabels

Samples: Sample index
ALL.AML: Factor, indicating ALL or AML
BM.PB: Factor, sample from marrow or peripheral blood
T.B.cell: Factor, T cell or B cell leuk.
FAB: Factor, FAB classification
Date: Date sample obtained
Gender: Factor, gender of patient
pctBlasts: pct of cells that are blasts
Treatment: response to treatment
PS: Prediction strength
Source: Source of sample
first reporterNames:
[1] "L37378_at" "L37792_at" "L37868_s_at" "L37882_at"
[6] "L37936_at"
first sampleNames:
[1] l1391| II4OII ll42l| ll47l| ll48l|

Subsetting works as expected, and the exprs or assayData extractors can be used.
> gme[1:3, 1:4]

instance of eSet
assayData component is of class environment

8

dimensions of the assayData components:

exprs

nrow 3

ncol 4
phenoData object with 11 variables and 4 cases
varLabels

Samples: Sample index
ALL.AML: Factor, indicating ALL or AML
BM.PB: Factor, sample from marrow or peripheral blood
T.B.cell: Factor, T cell or B cell leuk.
FAB: Factor, FAB classification
Date: Date sample obtained
Gender: Factor, gender of patient
pctBlasts: pct of cells that are blasts
Treatment: response to treatment
PS: Prediction strength
Source: Source of sample

first reporterNames:

[1] "L37378_at" "L37792_at" "L37868_s_at"

first sampleNames:

[1] n3gn 4o n4on

> dim(exprs(gme))

[1] 1000 72

7 phenoData metadata

The varMetadata slot of phenoData helps to encode units or other important features
of phenoData variables.

> pes <- phenoData(gme)

It is necessary to initialize the metadata-enabled phenoData structure.
> pes <- convertVarLabels (pes)

Then metadata can be added field by field

> pes <- addVarMetadataEntry(pes, "PS", "units",
+ "pct/100")

> phenoData(gme) <- pes

> getUnits (phenoData(gme), "PS")

[1] pct/100
Levels: pct/100

It would be possible to have a reporter metadata structure as well. This could be used
for preserving information on, e.g., the version of the mapping between reporter IDs and
gene symbols. Before adding this feature I want to hear reactions from the community.

8 A suggestion for a basic history mechanism

It is desirable that an eSet object contains some basic information about itself. Note
that the goal of such a history mechanism is less than complete reproducibility: for this
we have the vignettes (Sweave) technology.

Currently, preprocessing functions in the affy and vsn packages already do add some
information on what they did to their returned exprSet objects. For example, see the
last dozen lines in the function vsn in the file vsn/R/vsn.R of the package vsn. Here is
a toy example for an eSet object:

> setGeneric ("wonderfulPreproc", function(x, lambda) standardGeneric ("wonderfulPrepro
> setMethod ("wonderfulPreproc", c("eSet", "numeric"),
+ function(x, lambda) {

})
Pgme = wonderfulPreproc(gme, pi/2)

+ y = assayData(x)$exprs

+ gamma = mean(log(diag(t(y) %*} y)))

+ assayData(x)$exprs = 1/(1 + (y~lambda)/gamma)

+ cmt = list(comment = paste("Processed by wonderful processing method on",
+ date()), lambda = lambda, gamma = gamma)

+ x@description@preprocessing = append(x@description@preprocessing,

+ cmt)

+ return(x)

+

>

The resulting description slot then looks as follows.

> description(Pgme)

Experimenter name:
Laboratory:

Contact information:
Title:

URL:

No abstract available.

Information is available on: preprocessing

10

> description(Pgme)@preprocessing

$comment
[1] "Processed by wonderful processing method on Thu Nov 17 17:55:00 2005"

$lambda
[1] 1.570796

$gamma
[1] 22.25384

8.1 Open question

The mechanism proposed above allows to put arbitrary objects into the list preprocess-
ing. In particular, these can then be interrogated and used by subsequent processing
functions. For an example, please see the first dozen lines in the function meanSdPlot
in the file vsn/R/meanSdPlot.R of the package vsn.

But how does this relate to the history slot in the eSet, which is simply of class
character?

8.1.1 Seth’s comments

I think the history slot should be a list. I can see two possible ways to go with this.

Method I: Use automation. Modify every replacement function for eSet to optionally
accept a history argument. The default is to grab the current or parent call (as a call
object) and append this to the history list. The benefit is we get history tracking
without any work. It remains to be seen whether this is useful.

Method II: Require intervention by implementors to record history. Here we could
define an CallLoggingObject class that has a history slot (list). The eSet class would
extend CallLoggingObject as would any class wanting to log history. Usage would look
like:

record history
logCall(object) <- aCall

access history
callHistory(object)

The big disadvantage, is that users/developers have to call logCall or else history
is not recorded.

In recent discussions, Robert prefers method I because it doesn’t require changes to
preprocessing or other code. It should be fairly easy to implement. We can see if the
history log it produces is useful and iterate.

11

9 Session Information
The version number of R and packages loaded for generating the vignette were:

\begin{itemize}
\item R version 2.3.0, 2005-11-06, \verb|x86_64-unknown-linux-gnu|
\item Base packages: base, datasets, grDevices,
graphics, methods, stats, tools, utils
\item Other packages: Biobase™1.9.2
\end{itemize}

12

	Preliminaries
	Introduction
	Annotated dataset class
	Example
	Validity conditions
	Environments for assay results
	phenoData metadata
	A suggestion for a basic history mechanism
	Open question
	Seth's comments

	Session Information

