Titanium code smells

Table of Contents

Overview
Spotters
MarkerHandler
Type hierarchy

N DN N = =

Interaction of the markers and the designer package

Overview

One feature of Titanium is to find code smells, that is, highlight bad code patterns in ttcn3 projects.
The implementation focused on being flexible and extensible, while still being fast enough that it
can be executed on-the-fly immediately after semantic analyses.

The code of the implementation resides in the org.eclipse.titanium.markers and its submodules. A
rough overview of the interaction of entities during an analysis of a project is depicted below.

sd analyzer
1.1: analyze{project) :MarkerHandler —» O
@ =
——
—s

markers package Analyzer

Library user
1: analyze{project) —P»

‘/1.3: chedMode|candidate) List<hMarker=

1.2: locd)

x 1.4: MarkerHandler[List<hMarkers=)

i

Q beverses Q

AST Code smell spotters MarkerHandler

Spotters

Code smell spotters are the independent units that are responsible for recognizing one kind of code
smell in an AST node. They encapsulate the logic, and nothing else.

Spotters must declare a start node type, the type of AST node that is susceptible with having its kind
of code smell. For example, the spotter that is responsible for finding goto statements declares the
Goto_statement class as its entry AST node. During the analysis it is actually the Analyzer that
traverses the AST, and it calls the appropriate spotters for each node type, but it is only an
optimization.



When a spotter finished its job on a node, it returns a list of Markers, which are the abstraction of
code smell instances. Spotters are immutable, thus thread-safe. While the current code does not
rely on this property of the spotters, it makes possible to improve the Analyzer by executing the
spotters in parallel in an executor service.

MarkerHandler

The MarkerHandler class stores the Markers created during analysis, and associates them to the
IResource (ttcn3 files or the whole ttcn3 project) where the code smell instance belongs.
MarkerHandler instances are obtained via the analyzer methods, and can be used to query the code
smells by the associated IResource or by type, or to create the appropriate problem markers
(IMarker) for a given IResource in Eclipse.

Note that creating the markers in Eclipse requires locking the resource. Acquiring the lock is
attempted internally, which might lead to deadlock if the method was called with the lock already
held. To avoid this situation, the show() and showAl1l() methods schedule a separate job to create the
problem markers.

Type hierarchy

There lies an architectural weakness in the marker package, that stems from a necessary
optimization. When a spotter claim to be interested in e.g. the node type Expression, that means that
it should be executed not only on the AST nodes whose class is C(lass<Expression>, but also on those
that are subclass of Expression. However, doing this at runtime, via reflexion (using
Class#isInstance()) turned out to be too expensive (this way an analysis is about 4-6 times slower
than the current solution).

The current solution is that the type hierarchy of the AST nodes is wired in the code statically, and
when a spotter is registered for a node type, it is also registered for all its subtypes. This way, during
the AST traversal it is enough to query the class of the current node, without searching for its
superclasses.

For the performance gain we lost some maintainability: whenever the type hierarchy of the AST in
the designer project changes, the code in the class StaticData should reflect this change.

Interaction of the markers and the designer
package

The single point of communication is the Analyzer, which is responsible for acquiring the AST of
the project to analyze from the Parser, so it can hand the AST over to the spotters for traversal.
Apart from this, it should be noted that the code smell spotters rely on the methods offered by the
nodes of the AST, those methods should be also considered part of the interface.



	Titanium code smells
	Table of Contents
	Overview
	Spotters
	MarkerHandler
	Type hierarchy
	Interaction of the markers and the designer package

