
Orbis
UUID Generation, using Consistent Hashing in Erlang



UUID

[42-bit Timestamp, 12-bit Shard, 10-bit Sequence]



Timestamp

• Use Unix Epoch, in milliseconds, with an offset. 

• Subtract offset at generation time, add on 
decoding time. 

• Allows for enough values to outlive the lifetime of 
the system itself.



Sequence

• Rolling sequence. Like serial in PostgreSQL. 
One sequence counter per shard.



Shard

• Allows us to distribute our data out nicely to 
multiple backend data stores. 

• We shard data early, in a sensible way, which 
allows us to easily move data around later. 

• Each shard represents one worker in our ring of 
workers.



Consistent Hashing
2256 0

2256/2


