
uwm
users manual

by Christian Ruppert

May 4, 2013

Thanx to everybody who supports us in creating and distributing this system.

Contents

I A first touch II

1 get used to it II

1.1 First steps . II

1.2 Some things you might want to try out
(playing the piano) . III

1.2.1 Raising/Lowering while moving
(Tango) . III

1.2.2 Multimenu selection
(Cha Cha) . IV

II Command line options IV

III The graphical user interface V

2 Menus V

3 Windows V

4 The Keyboard V

IV Configuration VI

5 uwmrc – the central uwm configuration file VI

6 Menu definition files XI

7 urdb files XII

I

Preface

Starting uwm for the first time you might recognize that it doesn’t only look
different from other window managers but also behaves not quite the way most
of you would first expect such a system to do. This fact alone might be a reason
for some people to throw uwm away and go back to a conventional windowing
user interface.

Others might start thinking — Some of them might get used to it

Part I

A first touch

1 get used to it

uwm was designed to be easy to use once you’re used to it. And although there
are many people out there thinking different, getting used to uwm is not more
difficult than getting used to any other window management system:

How ”intuitive” is it to press a button with an X painted on to close a window or
to double-click somewhere to start a program? – Well it’s exactly as ”intuitive”
as pressing the right mouse button to start programs and pressing the middle
button for dragging windows around. Only that people aren’t used to this.

In this section we’ll take you on a short tutorial tour through the world of uwm
to give you an impression of how to use it. It was written for all those who are
curious about uwm but lost in the differences of the user interface.

1.1 First steps

When uwm starts it presents a blank screen to you. There are no buttons, icons,
desktop items etc. to be seen and there will never be during your whole uwm
session (since they would be covered by windows most of the time anyway).

Press the right mouse button and hold it down. A menu titled Application menu
appears. Select an application (the preconfigured items might not be available
on all systems, but an xterm should be, so move the pointer over the submenu
xterm and select the item login shell by releasing the mouse button above the
item).

The application’s window will appear on the screen.

Move the pointer somewhere over the window’s border and hold down the left
mouse button. The famous ude honeycomb will appear. Move the mouse pointer
over the hex-icon on the upper left and release the mouse button. Oops... The
window just disappeared together with the hex menu. It has been minimized.
Some people also call this state of a window iconified. There are no icons for

II

such windows in uwm however. You might be wondering how to get this damn
window back then if it cannot be accessed through an icon. Well, the answer is
simple: through a menu!

Press the middle mouse button and hold it down. (Yes, you’ll need a three-
button-mouse if you want to use uwm properly. However to get a first touch
perhaps your X-server’s emulate3buttons will do it). A menu called Windows
menu appears and either shows a list of workspaces which will pop out submenus
if the pointer moves over them or (in case there is only one workspace) represents
the only workspace’s submenu itself. The submenus are a list of the windows on
the corresponding workspace. Search the only submenu with an entry (which
is your program’s window of course) and select this entry. The window will
deiconify and reappear on the screen.

Now move the pointer somewhere over the window’s border again and hold down
the middle mouse button. Move the mouse and see what happens: The window
is being dragged around. Release the window by releasing the mouse button.

Try out resizing the window using the right mouse button on the window’s
border.

To finally close the window select the central upper button in the window’s
hex-menu.

Start another xterm and a second one so that you finally have two windows on
the screen now. Move them around to be overlaping. Now press and release
the middle mouse button somewhere on the upper window’s border without
moving the pointer. The window will be lowered under the other one. Reraise
the window by pressing the left mouse button and releasing it again somewhere
on the border without moving the mouse. (The hex menu will appear as long
as the button is pressed – ignore it.)

Now try around with uwm’s keyboard focus handling: Move the mouse over
one of the windows. Its border will change its color. The window now has
keyboard focus, try it out by typing something. Also type something into the
other window.

Close both windows, the first one by typing exit into it, the other one by using
the honeycomb’s close button.

1.2 Some things you might want to try out
(playing the piano)

Once you’re used to uwm’s basic ”feel” as it is described above you might start
wondering if this is all or if this piano-like mouse-usage is good for anything
except of confusing new users and getting rid of the title-bar. The answer is: It
is, and this is one of the things I personally like best about uwm’s user interface:
The chords.

1.2.1 Raising/Lowering while moving
(Tango)

Open several windows on the screen. Drag a window around using the mid-
dle mouse button. You might recognize that this window does not change its

III

stacking position while being dragged. While this effect in most cases is quite
useful there might be situations in which you want to raise or lower a window
while dragging it and so not only position it two- but threedimensionally. Press
the left mouse button while dragging the window (and release it again, keep
the middle button pressed while doing this) – Whooops: It’s risen to the top.
Now press the right button and watch your window disappear behind the other
ones...

1.2.2 Multimenu selection
(Cha Cha)

Imagine you have several programs put into a subsubsubsubsubmenu of uwm’s
Application Menu and want to call two of them at a time. I suppose you don’t
want to call the Menu, work yourself through the submenus to the application,
release the button, let the menu disappear and redo all this from the beginning
to call the second program. So to make this a little easier simply keep the right
button pressed which will keep the menu alive while selecting the programs to
be loaded by clicking on the corresponding items with any other mouse button
(Amiga users might remember this feature).

Using this method you can also e.g. open several xterms without having to leave
and recall the menu in between. Simply click on the xterm item three times in
case you want three xterms. Please note that in this context releasing the right
mouse button will only load the selected program in case the corresponding item
has not been selected by clicking on it directly before releasing the right button.

Part II

Command line options

Currently uwm supports the following command line options:

--NoStartScript will prevent uwm from executing the StartScript defined in
uwmrc (see below).

--NoStopScript will prevent uwm from executing the StopScript defined in
uwmrc (see below).

--TryHard conforming to icccm 2.0 uwm has the ability to recognize and replace
other (fully) icccm compliant window managers. However the default
behaviour is not to replace other window managers since these programs
usually will be terminated then which will also terminate the whole X-
session in most cases (which shouldn’t be done accidentally playing around
with uwm). This option uses the protocol specified by icccm 2.0 to make
another window manager terminate and pass control to uwm .

--Hostile icccm 2.0 allows X11 resource manager clients to terminate other re-
source manager clients by deleting their connection to the X-server in case

IV

they do not react to the protocol used by uwm --TryHard. uwm --Hostile
uses this in addition to the uwm --TryHard protocol. However there might
be some really ugly side effects killing a window managers connection to
the X-server so be careful with this option.

--StayAlive tells uwm exactly not to react on protocol requests like the ones
used by uwm --TryHarder. However uwm --Hostile is able to replace a
uwm --StayAlive.

--help displays a brief help screen describing uwm ’s command line options.

Part III

The graphical user interface

— will be added later —

2 Menus

— will be added later —

3 Windows

— will be added later —

4 The Keyboard

Currently the following keyboard shortcuts are implemented. This is not con-
figurable yet (but will hopefully be in future releases):

CTRL+ALT+LEFT ARROW go to previous workspace
CTRL+ALT+RIGHT ARROW go to next workspace
CTRL+ALT+UP ARROW activate next window
CTRL+ALT+DOWN ARROW activate previous window
CTRL+ALT+DOWN ARROW activate previous window
CTRL+ALT+PG UP raise active window
CTRL+ALT+PG DOWN lower active window
CTRL+ALT+mouse button
inside any window

act as if mouse button was pressed on the corre-
sponding window’s border

— will be extended later —

V

Part IV

Configuration

When uwm starts it first searches and reads its central configuration file, uwmrc.
Any further configuration files to be read by uwm have to be defined in this file.
If no uwmrc is found, uwm will start using default values. However the values
assumed might not be correct in all cases which sometimes is a reason for uwm
to quit (e.g. in case no hex icons were found).

All configuration files are searched using the same pattern: uwm first looks
into the directory $HOME/.ude/config. If the file is not found there it checks
the directory $UDEdir/config or, if the $UDEdir environment variable is not
set, the global ude configuration directory which results in something like
/usr/local/share/ude/config. The ude default installation directory can be
changed at compile/configuration time. Take a look at the INSTALL-Readme-
File for details about this. If the configuration file is still not found, uwm takes
the filename as it is (usually dereferencing any environment variables first).

If a c preprocessor is found on the system uwm is runing on, any configuration
files will be passed through the c preprocessor before uwm looks at them. This
will make it possible for you to use macros etc. Take a look at the manual of
your preprocessor for more info.

5 uwmrc – the central uwm configuration file

uwmrc is uwms basic configuration file. It is loaded at startup and behavoir and
outfit of uwm are controlled by this file as well. A typical uwrmc-line looks like
this:

BorderWidth=10

As you can see it consists of a keyword, a ’=’ and finally a number which repre-
sents an argument.

Please note that there are several context-sensitive lines in uwrmc i.e. they have
different meanings on different places.

Here’s a description of all uwmrc-Keywords:

BorderWidth = <nr> sets the width of window borders to <nr> pixels. Defaults
to 10

TitleHeight = <nr> sets the number of pixels the northern border is wider
than the other ones. Defaults to 0.

ScreenColor = <col> sets the current workspace’s screen background color.

ScreenPixmap = <filename> sets the current workspace’s screen background
image to the image file defined by <filename>. Overrides ScreenColor
if set. Currently xpm and jpeg file formats are supported.

VI

InactiveWin = <col> sets the color of inactive windows’ borders on the cur-
rent workspace.

ActiveWin = <col> sets the color of the active window’s border on the current
workspace.

MenuFont = sets the font used in menus.

BackColor = <col> sets the current workspace’s background color.

FontColor = <col> sets the current workspace’s default color for standard
text.

MenuFile = <filename> makes uwm reading its application menu from <filename>.
Please note that uwm reads exactly one menu file after finishing reading
uwmrc. This means that a MenuFile line overwrites any previous MenuFile
lines. If you want to merge several menu files into one application menu,
please use the features menu files offer to do this.

StartScript = <filename> sets uwms StartScript to <filename>. The file
must be an executable or a shell script for /bin/sh. If set, this file will be
executed when uwm starts. A StartScript line overrides any previous
StartScript lines.

RubberMove = {0|1} enables (0) or disables (1) opaque window movement.

MenuSize = <triple> sets ude’s menu layout: #1 defines the width of menu
bevels, #2 and #3 define the label’s x- and y-offset.

NarrowBorderWidth = <nr> defines the widht of so-called transient window’s
borders. Most applications mark requesters and other dialogue windows
etc. as transient.

UWMMenuButton = {1|2|3} defines the button which starts the UWM Menu
from the root window. Since uwm doesn’t check if all root window menus
are accessible, this option should always be used together with DeiconifyButton
and AppMenuButton to make sure all three menus can be reached. Defaults
to 1.

DeiconifyButton = {1|2|3} defines the button which starts the Windows Menu
from the root window. Since uwm doesn’t check if all root window menus
are accessible, this option should always be used together with UWMMenuButton
and AppMenuButton to make sure all three menus can be reached. Defaults
to 2.

AppMenuButton = {1|2|3} defines the button which starts the Application Menu
from the root window. Since uwm doesn’t check if all root window menus
are accessible, this option should always be used together with DeiconifyButton
and DeiconifyButton to make sure all three menus can be reached. De-
faults to 3.

TransientMenues = {0|1} lets you choose if you want your menus disappear
when you release the mouse pointer (1) or if you want them to stay until
you either select an item or click somewhere outside of the menu (0).
Defaults to 1.

VII

SubMenuTitles = {0|1} Lets you choose whether redundant titles are dis-
played for submenus. Defaults to 0.

WinMenuButton = <triple> lets you change the button behavior for hex menus.
#1 specifies the button to make the hex menu appear, #2 specifies the but-
ton used to move the window to the previous workspace and #3 specifies
the button used to move the window to the next workspace. Defaults to
1;2;3. The use of this option is disencouraged!

DragButtons = <triple> lets you change the button behavior for dragging
windows. #1 specifies the button to enter dragging mode, #2 specifies the
button to raise windows and #3 specifies the button for lowering windows.
Defaults to 2;1;3. The use of this option is disencouraged!

ResizeButtons = <triple> specifies the button behaviour for resizing win-
dows. #1 specifies the button to enter resizing mode, #2 specifies the
button for autoraising and #3 specifies the button to quit autoraise mode
and to activate the ’oldsize’-function. Defaults to 3;1;2. The use of
this option is disencouraged!

WorkSpaces = <nr> lets you specify the number of workspaces you want.

WorkSpaceName = <string> lets you specify a name for the current workspace.

WorkSpaceNr = <nr> sets the current workspace. Any options that take effect
on the ’current workspace’ apply to the workspace set to be the current
workspace most recently.

PlacementStrategy = {0-7} defines the placement strategy to be used. There
are the following possibilities:
0 no placement strategy
2 agressive gradient-placement (place all windows automatically)
1 or 3 gradient-placement (automatic placement)
4 agressive interactive placement (place all windows semi-automatically)
5 interactive placement (semi-automatic placement)
6 agressive user placement (place all windows manually)
7 user placement (manual placement)

PlacementThreshold = <nr> defines the overlapping value in pixels from which
on you want to place your windows manually in interactive placement stra-
trgy. This is useless in other placement strategies. In most other WMs 0
is used here without any comments or a way to change. 0 is the default
value. If you want this option to make sense your values shouldn’t be
too small (I tried out 100000 to be quite a good value at a screen-size of
1200× 1024).

ScreenCommand = <string> defines a command line which is run when the
current workspace is entered and killed when it is left. You can e.g. use
this to have xearth on the background of one workspace while xsnow makes
it winter on another one. Nice toy...

ReadFrom = <filename> reads another config file in uwmrc format immediately.
The file is interpreted as if it was inserted at the place of the corresponding
ReadFrom line.

VIII

BevelFactor = <float> defines how extreme bevels are drawn. A value of 1
draws no bevels, values 0 < <float> < 1 draw deep bevels and values
greater than 1 draw usual high bevels. A BevelFactor setting affects all
3d-color definitons between itself and the next BevelFactor line.

FrameBevelWidth = <nr> specifies the bevel width used for window frames.

OpaqueMoveSize = <nr> specifies the size in pixels from which on windows
are no longer moved opaquely but transparently. A value of 0, which is
also the default, means move always opaque, any other value means move
transparent from that size on. Values greater than 0 might be useful on
slower machines with some applications. You should try out your favourite
value or if e.g. transparent movement for all windows works better on your
machine with your frequently used applications.

TitleFont = specifies the font used for window titles.

ActiveTitle = <col> specifies the color the name of active windows is drawn
with.

InactiveTitle = <col> specifies the color the name of inactive windows is
drawn with.

FrameFlags = <nr> specifies the layout and behaviour of window titles and
borders. Expects a sum of the following values:

1 Groove draw the groove on window borders if there’s
enough space.

2 Line draw a black separation line along the inside
of window borders.

4 Inactive Title display inactive windows’ titles.
8 Active Title display active window’s title.

16 Dodgy Title hide active window’s title when hit by the
mouse pointer.

32 Center Title display titles in the center of the top border
instead of the northeastern corner.

E.g. use a value of 1 + 2 + 4 + 32 = 39 if you want titles in the center
position disappearing when the window is activated and grooves drawn on
your window borders.

BehaviourFlags = <nr> specifies parts of uwm’s behaviour. Expects a sum of
the following values:
1 AllMouse do not ignore mouse events passed on to uwm

by some client windows (e.g. xosview can be
moved easily clicking somewhere in the win-
dow using this option).

OtherWMs = <string> expects a comma seperated list of shell command lines
used to start other window managers out of uwm.

MaxWinWidth = <nr> defines the maximum window width allowed during this
session. This is useful on displays with low resolutions. Unfortunately
there might be some problems with applications not regarding the most
basic X11 specifications.

IX

MaxWinHeight = <nr> defines the maximum window height allowed during this
session. This is useful on displays with low resolutions. Unfortunately
there might be some problems with applications not regarding the most
basic X11 specifications.

StopScript = <filename> sets uwms StopScript to <filename>. The file
must be an executable or a shell script for /bin/sh. If set, this file will
be executed when uwm starts. A StopScript line overrides any previous
StopScript lines.

WarpPointerToNewWinH = <nr> allows you to make uwm warp the pointer to
any newly mapped window. Any value between 0 and 100 defines the
X-position in the window (in percent) the pointer is warped to. A value
of -1 means don’t warp the pointer and a value of -2 means warp the
pointer to the upper left corner of the window’s border. Only takes effect
if WarpPointerToNewWinV is set between 0 and 100.

WarpPointerToNewWinV = <nr> allows you to make uwm warp the pointer to
any newly mapped window. Any value between 0 and 100 defines the
Y-position in the window (in percent) the pointer is warped to. A value
of -1 means don’t warp the pointer and a value of -2 means warp the
pointer to the upper left corner of the window’s border. Only takes effect
if WarpPointerToNewWinH is set between 0 and 100.

InactiveText = <col> defines the color of any inactive text.

HighlightedText = <col> sets font used for highlighted text.

HighlightedBgr = <col> sets the background color of highlighted text.

TextColor = <col> sets the text color for text windows, e.g. editors, terminals
etc.

TextBgr = <col> sets the background color for text windows, e.g. editors,
terminals etc.

BevelWidth = <nr> sets the width of bevels for ude applications (will be used
in the library)

ResourceFile = <filename> uwm can read a file with the format described
in section 7 to set workspace specific application colors etc.

SnapDistance = <nr> sets the distance (in pixels) from which a window snaps
to another window’s or the screen’s border when being moved.

HexPath = <string> sets the path where uwm first looks for a set of hex icons.
The icons must be of .xpm format, and the named directory must contain
a complete set of hex icons with the following names and meanings:

X

Normal State Selected State Meaning
autorise.xpm autorises.xpm autorise or resize the window
back.xpm backs.xpm lower the window
close.xpm closew.xpm close the window
iconify.xpm iconifys.xpm iconify/minimize the window
kill.xpm kills.xpm shut down the application’s con-

nection to the x-server
menu.xpm menus.xpm open the window menu
really.xpm reallys.xpm security button that X-Server

connection gets killed by acci-
dent

TextFont = sets the font used for text windows such as editors or ter-
minals etc. The use of a fixed width font is highly recommended here.

HighlightFont = sets the font for highlighted text.

InactiveFont = sets the font for inactive elements such as buttons or
menu items etc.

In this description the following data types are being used as arguments for the
options:

<nr> is an integer number with the range specified in the option’s description.

<string> represents a usual text line. it may contain any desired characters,
whitespace etc. and is terminated by a linebreak.

 is an X11 font definition string. The most easy way to get such a string
is to paste it directly from xfontsel into the file.

<filename> is the name of a file. The file is searched in the way described
above and in most cases passed through the c preprocessor.

<col> represents an X11 color definition string. For the exact format of these
strings please take a look at the man page of XQueryColor. All colors can
be set for any workspace seperately.

<triple> represents a set of three semicolon seperated integers.

<float> represents a floating point number. Please note that the decimal ex-
pected seperation character may differ with the internationalized version
of (g)libc with different LANG-environments set (e.g.. as default but , for
LANG=de). Admins of multilingual systems say thanx to the big interna-
tionalisationers of libc for this feature.

{X|Y|Z} means one out of X, Y or z.

6 Menu definition files

A menu definition file is a hierarchical file made up of the following commands:

XI

SUBMENU "<name>" {commands to build submenu} will create a submenu named
<name> with the items created by the commands inside the braces.

ITEM "<name>":"<command>"; will create an item on the corresponding posi-
tion named <name> which will lead to the execution of command if selected.
The item is not created in case there already exists an item with the same
<name> in the same submenu.

LINE; will add a seperation line to the corresponding position. Several LINEs
with nothing else in between will be truncatd to a single seperator.

FILE "<filename>"; will process the named file as if its contents were in the
position of the FILE command. The file is searched for in the way described
above and passed through the preprocessor.

PIPE "<command>"; will call <command> and process its standard output as if
it was in the position of the PIPE command. The commands output is not
passed through the preprocessor.

7 urdb files

urdb-files have the same format as xrdb files (see xrdb documentation for details)
except that there are some additional macros defined which are replaced by uwm
workspace dependent. These macros are:

@BACKGROUND@ represents the workspace’s background color set with BackColor
in uwmrc.

@LIGHTCOLOR@ represents the workspace’s light bevel color for BackColor.

@SHADOWCOLOR@ represents the workspace’s shadow bevel color for BackColor.

@STANDARDTEXT@ represents the workspace’s standard text color (TextColor).

@INACTIVETEXT@ represents the workspace’s color for inactive text (InactiveText)

@HIGHLIGHTEDTEXT@ represents the workspace’s color for highlighted text (HighlightedText)

@HIGHLIGHTEDBGR@ represents the workspace’s background color for highlighted
text (HighlightedBgr)

@TEXTCOLOR@ represents the workspace’s text color for text windows (TextColor)

@TEXTBGR@ represents the workspace’s background color for text windows (TextBgr)

@BEVELWIDTH@ the standard bevel width (BevelWidth).

@FLAGS@ 1 if transient menus are activated, if not 0.

@STANDARDFONT@ the standard font (MenuFont).

@INACTIVEFONT@ the font for inactive buttons etc (InactiveFont)

@HIGHLIGHTFONT@ the font used for highlighted text (HighlightFont)

@TEXTFONT@ the font used for text windows (TextFont)

XII

