\section{Local options of the macro \tkzcname{AQquestion}} \subsection{Local use of \tkzname{pq}} \Iopt{AQquestion}{pq} The following table is obtained with the options |lq=85mm| and |size=\wide|. The questions are misplaced. The local option \tkzname{pq} solves this problem, the text can be moved 1mm upwards with \tkzcname{AQquestion[pq=1mm]}. and by |6mm| for the second. \medskip \begin{alterqcm}[lq=55mm,size=\large] \AQquestion{If the function $f$ is strictly increasing on $\mathbf{R}$ then the equation $f(x) = 0$ admits :} {{At least one solution}, [At most one solution], {Exactly one solution} } \AQquestion{If the $f$ function is continuous and positive on $[a~ ;~ b]$ and $\mathcal{C}_{f}$ its representative curve in an orthogonal system. In units of area, the area $\mathcal{A}$ of the domain delimited by $\mathcal{C}_{f}$, the abscissa axis and the lines of equations $x = a$ 5 and $x = b$ is given by the formula : } {% {$\mathcal{A}= \displaystyle \int_{b}^a f(x)\ \text{d}x$}, {$\mathcal{A}= \displaystyle \int_{a}^b f(x)\ \text{d}x$}, {$\mathcal{A} = f(b) - f(a)$}} \end{alterqcm} \medskip \tkzname{Here is the corrected version} \begin{alterqcm}[lq=55mm,size=\large] \AQquestion[pq=1mm]{If the $f$ function is strictly increasing on $\mathbf{R}$ then the equation $f(x) = 0$ admits...} {{At least one solution}, {At most one solution}, {Exactly one solution} } \AQquestion[pq=6mm]{If the $f$ function is continuous and positive on $[a~ ;~ b]$ and $\mathcal{C}_{f}$ its representative curve in an orthogonal system. In area units, the $\mathcal{A}$ area of the domain delimited by $\mathcal{C}_{f}$, the abscissa axis and the lines of equations $x = a$ and $x = b$ is given by the formula: } {{$\mathcal{A}= \displaystyle \int_{b}^a f(x)\ \text{d}x$}, {$\mathcal{A}= \displaystyle \int_{a}^b f(x)\ \text{d}x$}, {$\mathcal{A} = f(b) - f(a)$} } \end{alterqcm} \medskip \begin{tkzexample}[code only, small] \begin{alterqcm}[lq=55mm,size=\large] \AQquestion[pq=1mm]{If the $f$ function is strictly increasing on $\mathbf{R}$ then the equation $f(x) =0 $ admits... {{{At least one solution}, [At most one solution], {Exactly one solution}} \end{tkzexample} \medskip \begin{tkzexample}[code only, small] \AQquestion[pq=6mm]{If the $f$ function is continuous and positive on $[a~ ;~ b]$ and $\mathcal{C}_{f}$ its representative curve in an orthogonal system. In units of area, the area $\mathcal{A}$ of the domain delimited by $\mathcal{C}_{f}$, the abscissa axis and the lines of equations $x = a$ and $x = b$ is given by the formula: } {{$\mathcal{A}= \displaystyle \int_{b}^a f(x)\ \text{d}x$}, {$\mathcal{A}= \displaystyle \int_{a}^b f(x)\ \text{d}x$}, {$\mathcal{A} = f(b) - f(a)$}} \end{alterqcm} \end{tkzexample} \subsection{Global and local use of \tkzname{pq}}\ \Iopt{AQquestion}{pq} \IoptEnv{alterqcm}{pq} This time, it is necessary to move several questions, I placed a |pq=2mm| globally, that is to say like this :\tkzcname{begin\{alterqcm\}[lq=85mm,pq=2mm]}. \textbf{All} questions are affected by this option but some questions were well placed and should remain so, so locally I give them back a |pq=0mm|. \medskip \begin{alterqcm}[lq=85mm,pq=2mm] \AQquestion{A bivariate statistical series. The values of $x$ are 1, 2, 5, 7, 11, 13 and a least squares regression line equation of $y$ to $x$ is $y = 1.35x +22.8$. The coordinates of the mean point are :} {{$(6,5;30,575)$}, {$(32,575 ; 6,5)$}, {$(6,5 ; 31,575)$}} \AQquestion[pq=0mm]{$(u_{n})$ is an arithmetic sequence of reason $-5$.\\ Which of these statements is true? } {{For all $n,~ u_{n+1} - u_{n} = 5$}, {$u_{10}= u_{2}+ 40$}, {$u_{3} = u_{7} + 20$} } \AQquestion[pq=0mm]{Equality $\ln (x^2 - 1) = \ln (x - 1) + \ln (x+1)$ is true} {{For all $x$ in $]- \infty~;~-1[ \cup]1~;~+ \infty[$}, {For all $x$ in $\mathbf{R} - \{-1~ ;~ 1\}$.}, {For all $x$ in $]1~ ;~+\infty[$} } \AQquestion{For all $x$, the number \[\dfrac{\text{e}^x - 1}{\text{e}^x + 2}\hskip12pt \text{equal to :} \] } {{$-\dfrac{1}{2}$}, {$\dfrac{\text{e}^{-x} - 1}{\text{e}^{-x} + 2}$}, {$\dfrac{1 - \text{e}^{-x}}{1 + 2\text{e}^{-x}}$} } \AQquestion{Let I $= \displaystyle\int_{\ln 2}^{\ln 3} \dfrac{1}{\text{e}^x - 1}\,\text{d}x$ and J $ = \displaystyle\int_{\ln 2}^{\ln 3} \dfrac{\text{e}^x}{\text{e}^x - 1}\,\text{d}x$ \\ then the number I $-$ J is equal to} {{$\ln \dfrac{2}{3}$}, {$\ln \dfrac{3}{2}$}, {$\dfrac{3}{2}$} } \end{alterqcm} \medskip \begin{tkzexample}[code only,vbox,small] \begin{alterqcm}[lq=85mm,pq=2mm] \AQquestion[pq=0mm]{Equality $\ln (x^2 - 1) = \ln (x - 1) + \ln (x+1)$ is true} {{For all $x$ in $]- \infty~;~-1[ \cup]1~;~+ \infty[$}, {For all $x$ in $\mathbf{R} - \{-1~ ;~ 1\}$.}, {For all $x$ in $]1~ ;~+\infty[$}} \AQquestion{For any real $x$, the number \[\dfrac{\text{e}^x - 1} {\text{e}^x + 2}\hskip12pt \text{equal to :} \] } {{$-\dfrac{1}{2}$}, {$\dfrac{\text{e}^{-x} - 1}{\text{e}^{-x} + 2}$}, {$\dfrac{1 - \text{e}^{-x}}{1 + 2\text{e}^{-x}}$}} \end{alterqcm} \end{tkzexample} \subsection{\tkzname{correction} and \tkzname{br} : rank of good answer} \Iopt{AQquestion}{br} \Iopt{AQquestion}{correction} First of all, it is necessary to ask for an answer key. To do this, just include the option \tkzname{correction} which is a boolean, thus set to \tkzname{true}. Then in each question, it is necessary to give the list of correct answers. For example, with \tkzname{br=1} or \tkzname{br=\{1,3\}}. Here is the previous year's correction: \medskip \begin{tkzexample}[vbox,small] \begin{alterqcm}[VF,correction,lq=125mm] \AQquestion[br=1]{For all $x \in ]-3~;~2],~f'(x) \geqslant 0$.} \AQquestion[br=2]{The $F$ function has a maximum in $2$} \AQquestion[br=2]{$\displaystyle\int_{0}^2 f'(x)\:\text{d}x = - 2$} \end{alterqcm} \end{tkzexample} \endinput