
Ebib

Joost Kremers

29 Sep 2012

Ebib is a program with which you can manage BibTeX database files without having to edit the raw
.bib files. It runs in GNU/Emacs, version 23.1 or higher (lower versions are not supported).

It should be noted that Ebib is not a minor or major mode for editing BibTeX files. It is a program in
itself, which just happens to make use of Emacs as a working environment, in the same way that for
example Gnus is.

e advantage of having a BibTeX database manager inside Emacs is that X is no longer required, as
Emacs can run on the console, and also that some integration with Emacs’ TeX and LaTeX modes be-
comes possible. For example, you can push a BibTeX key from Ebib to a LaTeX buffer, or, vice versa,
when you’re in a LaTeX buffer, you can consult your BibTeX database and insert a key from it into the
document. Another advantage of Ebib is that it is completely controlled by key commands: no stressful
mouse movements are required, as with most other (usually X-based) BibTeX database managers.

Installation

Paage manager

e easiest way to install Ebib is to use Emacs’ package manager. Ebib is available as a package from
the Melpa package archive. If you add the Melpa archive to your package-archive list, you can install
Ebib from the package manager. is will also install the Info file so you can access the Ebib manual
within Emacs.

Note: the package manager (package.el) is part of Emacs 24. Users of Emacs 23 have to install it first.
See Wikemacs for discussion.

Manual installation

You can also install Ebib manually by copying the file ebib.el to somewhere in your load path and add
the following line to Emacs’ init file ~/.emacs:

(autoload 'ebib "ebib" "Ebib, a BibTeX database manager." t)

On a default installation, the load path probably only contains system directories. If you want to run
ebib.el from somewhere else (e.g., directly from the source directory), you can add this directory to
your load path:

1

http://melpa.milkbox.net/
http://wikemacs.org/wiki/Package.el

(add-to-list 'load-path "~/src/ebib"))

Note: if you do not know what your load path is set to, go to the *scratch* buffer, type load-path
on an empty line, put the cursor right aer it and type C-j. e value of load-path will then appear
in the buffer.

Alternatively, you can load Ebib directly by puing the following in .emacs:

(load "/path/to/ebib")

e difference between load and autoload is that the former loads Ebib immediately and thus slows
down Emacs’ startup (a bit), while the laer loads Ebib only when it is called (and thus slows down
Ebib’s first time start up a bit).

It is recommended to byte-compile the source, Ebib runs quite a lot faster when it is byte-compiled. You
can do this either within Emacs with M-x byte-compile-file (recommended on OS X), or from your
shell by going into the directory where you put ebib.el and typing:

emacs -batch -f batch-byte-compile ebib.el

is will create a file ebib.elc, which Emacs will load instead of ebib.el

Installing the info file

If you install Ebib through the package manager, the Info file is installed automatically as well. However,
if you install Ebib manually, or run it from the source directory, this is not the case. If you want the
Info file to be accessible from within Emacs, you need to put it in a directory where Emacs can find
it. One way to do this is to put ebib.info in one of the standard info directories. Make sure to run
install-info ebib.info dir, so that Emacs knows about the new info file.

Alternatively, you can leave ebib.info in Ebib’s source directory and add that dir to Info-additional-directory-list.
It contains a suitable dir file, so there’s no need to run install-info.

Starting Ebib

Once Ebib has been installed and is loaded, you can start it with M-x ebib. is command is also used
to return to Ebib when you have put the program in the background. You can bind this command to a
key sequence by puing something like the following in Emacs’ init file:

(global-set-key "\C-ce" 'ebib)

You can of course choose any key combination you like. (In Emacs, key combinations of C-c <letter>
are reserved for the user, so that no package may set them.)

2

Basic Usage

A BibTeX database is somewhat of a free-form database. A BibTeX entry consists of a set of field-value
pairs. Furthermore, each entry is known by a unique key. e way that Ebib navigates this database
is by having two windows, one that contains a list of all the entry keys in the database, and one that
contains the fields and values of the currently highlighted entry.

When Ebib is started, the current windows in Emacs are hidden and the Emacs frame is divided into two
windows. e top one contains a buffer that is called the index buffer, while the lower window contains
the entry buffer. When a database is loaded, the index buffer holds a list of all the keys in the database.
You can move through these keys with the cursor keys. In the entry buffer, the fields of the currently
highlighted entry are shown, with their values.

In this chapter, all basic functions of Ebib are described, so that you can get startet with it. At times,
reference will be made to later chapters, where more specific functions are described.

Ebib has a menu through which most functions can be accessed. Especially some of the lesser used
functions can only be accessed through the menu (unless you assign key shortcuts to them, of course.)

Getting Started

Ebib is started with the command M-x ebib. Entering this command hides all the windows in the
current Emacs frame and replaces them with two windows: the top one contains the index buffer, the
boom one, taking up the larger part of the screen, contains the entry buffer. e index buffer is named
none, to indicate that no database has been loaded. If you open a database, or start a new one, the index
buffer will carry its name.

You can quit Ebib by typing q. You will be asked for confirmation, and you will receive a warning if you
happen to have an unsaved database. e command z can also be used to leave Ebib. However, unlike
q, which completely quits Ebib, z only lowers it, so that it remains active in the background. e .bib
files that you have opened remain loaded, and you can return to them by typing M-x ebib again.

Opening a .bib File

Loading a .bib file into Ebib is done with the command o. Ebib reads the file that you specify, and
reports how many entries it found, how many @string definitions it found, and whether a @preamble
was found. Note that when Ebib reads a .bib file, it only reads entry types (e.g. book, article,
phdthesis etc.) that it knows about. Fields (e.g. author, title, year etc.) that Ebib does not
know about, are loaded (and saved) but not displayed, so they cannot be edited. erefore, you should
make sure that all the entry types and fields that your databases use are defined. A sensible set has been
predefined, so that anyone who’s using standard BibTeX entry types should have no problem loading
an existing .bib file into Ebib. If, however, you have custom entry types, or custom fields in your .bib
files, you should define them. is can be done by selecting “Options | Modify Entry Types” from the
Ebib menu. (See also the chapter on customising Ebib, esp. Entry Types.)

Every time Ebib reads a .bib file, it produces a few log messages. ese are wrien into a special buffer
Ebib-log. If Ebib encounters entry types in the .bib file that it doesn’t know, it will log a warning.
If Ebib finds something that it believes to be incorrect, an error will be logged. If any warnings or errors
occur while loading the .bib file, Ebib tells you so aer loading the file. To view the log file, press l in
the index buffer.

3

Note that even if it detects warnings or errors, Ebib will try to continue parsing the rest of the .bib file.
at means that normally, only the entry in which an error occurs is not read. Entries occurring aer
the problematic one are read.

Navigating a .bib File

Once you’ve opened a .bib file, the keys of all the entries in the file are shown in alphabetical order in
the index buffer in the top Ebib window. (In fact, it is possible to show more than just the entry key in
this buffer. See Index Display Fields on how to accomplish this.) e first entry is highlighted, meaning
it is the current entry. e fields it holds and their values are shown in the entry buffer in the boom
Ebib window. e first field is the type field, which tells you what kind of entry you’re dealing with (i.e.
book, article, etc.).

Below the type field, Ebib displays (up to) three sets of fields. e first set are the so-called obligatory
fields, the fields that BibTeX requires to be filled. e second group are the optional fields, which do
not have to be filled but which BibTeX will normally add to the bibliography if they do have a value.
e third group are the so-called additional fields. ese fields are usually ignored by BibTeX (note that
BibTeX normally ignores all fields it does not know), although there are bibliography styles that treat
some of these fields as optional rather than as additional; (i.e., the harvard styles do typeset the url
field, if present.)

e first two groups of fields are different for each entry type, while the third group are common to all
entry types. You can use the additional fields, for example, to add personal comments to the works
in your database. Ebib by default defines the following additional fields: crossref, url, annote,
abstract, keywords, file and timestamp. If these are not sufficient for you, you need to customise
Ebib and add your own fields. (See Additional Fields, if you need to find out how to do that.)

To move around in the index buffer, you can use the up and down cursor keys, C-p and C-n, or for those
more used to mu’s key bindings, k and j. Furthermore, Space and PgDn move a screenful of entries
down, while b and PgUp move in the other direction. Lastly, g and Home move to the first entry, while
G and End move to the last one.

Ebib is not restricted to opening just one .bib file at a time. You can open more files by just typing o
again and entering the filename. Ebib numbers the databases: the number of each database is shown
in the mode line of the index buffer, directly before the database name. e keys 1–9 provide a quick
way of jumping from one database to another. Note that the numbering is dynamic: if you have three
databases opened and then close the second, database 3 becomes database 2.

With the left and right cursor keys, you can move to the previous or next database. ese keys wrap,
so if you hit the left cursor key while the first database is active, you move to the last database. If you
are done with a database and want to close it, type c. is closes the current database. It does not leave
Ebib, and all other databases you have open will remain so.

Starting a New .bib File

If you want to start a new .bib file from scratch, you cannot just go and enter entries. You first have to
give the database a name. So, to start a new database, type o first, and give the new file a name. Once
you have done this, you can start adding entries to the database.

4

Editing the Database

Of course, being able to open and view .bib files is only half the fun. One needs to be able to edit the
files as well. Ebib’s essential editing facilities are discussed here.

Adding and Deleting Entries

To add an entry to a database, you type a. When you do this, Ebib first asks you for an entry key, as
every entry must be identified by a unique key. Just type a name for the new entry (say jones1998).
Since the entry key must be unique, Ebib will complain if you enter a key that already exists.

You can also have Ebib automatically generate entry keys: if you set the customisation option Autogen-
erate Keys, Ebib does not ask you for a key when you add a new entry. Instead, it creates a temporary
key (of the form <new-entry>). When you have finished entering the field values for the new entry,
Ebib automatically replaces the temporary key with a key that is based on the contents of the author
(or editor), year and title fields.

Note that if you should later decide that you want to change the key of an entry, you can do so with the
command E. So if you have an entry with the key jones1998 and you want to add another entry by
Jones from 1998, you can call the new one jones1998b and rename the existing one to jones1998a.
Similarly, it is possible to let Ebib recreate an autogenerated key by pressing K.

Deleting an entry is done with d. Be careful with this: you will be asked for confirmation, but once
you’ve confirmed, the entry is gone, and it is not possible to bring it back. ere is no undo in Ebib. (If
you haven’t saved the database yet, it is still possible to retrieve the deleted entry from the .bib file,
and otherwise it may still be in the backup file that Ebib creates. See Saving a Database.)

Editing Fields Values

Editing the field values for an entry is done in the lower of the two Ebib buffers, the so-called entry
buffer. You can move focus to the entry buffer by typing the command e in the index buffer.

You can move between fields with the same keys that you use to move between entries in the index
buffer: the cursor keys up and down, C-p and C-n, or j and k. Space and PgDn move to the next set
of fields, while PgUp and b move to the previous set of fields. g and G, and Home and End also work as
expected.

Editing a field value can be done with e. (In fact, in the entry buffer, RET is equivalent to e.) For most
fields, Ebib simply asks you for a string value in the minibuffer. (Here, RET confirms the edit, while C-g
cancels it.) Although BibTeX requires that field values be surrounded by braces {} (or double quotes “”,
but Ebib does not use those, even though it can of course handle them when they are used in an existing
.bib file) you do not need to type these. Ebib adds them when it saves the .bib file.

Some fields, however, are handled in a special way. e first of these is the type field: if you edit this
field, you must enter one of the predefined entry types. Ebib won’t allow you to enter anything else.
You can use tab-completion in this case. Similarly, if you edit the crossref field, Ebib requires that you
fill in a key from the database. Here, too, you can use tab-completion.

Note that if you’re adding a new entry, Ebib automatically puts you in the entry buffer aer you’ve
typed the entry key: you don’t have to type e to move to the entry buffer. When creating a new entry,
it is best to set the type field first, because the type field determines which other fields are available
for an entry.

5

Note also that aer editing a field, Ebib (usually) puts you on the next field. is is convenient if you’re
creating a new entry and need to fill out several fields in a row.

If you’re done editing the fields of the entry, type q to move focus back to the index buffer. (Note: keys
may have different functions in the index buffer and the entry buffer. q is a typical example: in the entry
buffer, it quits editing the entry and moves focus back to the index buffer. In the index buffer, however,
q quits Ebib.)

Editing Multiline Values

Apart from the type and crossref field, there is another field that Ebib handles in a special way when
you edit its value. is is the annote field. Most field values normally consist of a single line of text.
However, because the annote field is meant for creating annotated bibliographies, it would not be very
useful if you could only write one line of text in this field. erefore, when you edit the annote field,
Ebib puts you in the so-called multiline edit buffer. is is essentially a text mode buffer that allows you
to enter as much text as you like. To store the text and leave the multiline edit buffer, type C-c | q.

If you want to leave the multiline edit buffer without saving the text you have just typed, type C-c |
c. is command cancels the edit and leaves the multiline edit buffer. e text that is stored in the field
you were editing is not altered.

Multiline values are not restricted to the annote field. Any field can in fact hold a multiline value.
(Except of course the type and crossref fields.) To give a field a multiline value, use l instead of e.
You will again be put in the multiline edit buffer, where you can edit the value. Note that you can use l
even if a field already has a single line value. Ebib will just make that the first line in the multiline edit
buffer.

When a field has a multiline value, only the first line is shown in the entry buffer, for space reasons. To
indicate that the value is multiline, a plus sign + is placed in front of the value.

By the way, the e key is smart about the way an entry must be edited. If you press e on a field that
already has a multiline value, regardless of the fact whether it is the annote field or not, Ebib puts you
in the multiline edit buffer. erefore, you need l only if you want to give a field a multiline value when
it doesn’t have one yet.

For more details on working with the multiline edit buffer, see e Multiline Edit Buffer.

Copy, Cut, Paste (Yank), and Delete

A fewmore commands are available when you’re in the entry buffer editing field values. e commands
c, x and y implement a copy and paste system: c copies the contents of the current field to the kill ring,
x kills the contents of the current field to the kill ring, and y yanks (pastes) the most recently killed text
in the kill ring. You can type y repeatedly to get the same effect you get in Emacs when you type M-y
aer an initial C-y: every additional use of y moves back in the kill ring.

Lastly, there is the command d, which deletes the contents of the current field without storing the text
in the kill ring. (It asks for confirmation, though, just to make sure.)

Note that y only works when the current field does not have a value yet. is is to prevent you from
accidentally overwriting a field value. If you do want to yank text into a field that already has a value,
simply hit d first to delete the text.

6

Saving a Database

When you have undertaken any kind of editing action on a database, it is marked as modified, which is
indicated in the mode line for the index buffer. A modified database can be saved by typing s. is saves
the database to the file it was loaded from without asking for confirmation. (It is similar to C-x C-s in
Emacs.) If you’re saving a file for the first time aer loading it, Ebib creates a backup file. (Ebib honours
backup-directory-alist when saving backups. Note that you can also disable backups altogether
with the option Create Backups.

If you have multiple databases open, have made changes in more than one of them, and want to save
all of them without going through each yourself, you can save all databases at once through the menu.

e menu also provides a way to save the database to another name. is command is similar to C-x
C-w in Emacs, so that aer using it, the new .bib file becomes associated with the database.

Searing

Ebib provides several search methods. First, if you are in the index buffer, the normal Emacs incremental
searches, C-s and C-r, function as expected. You can use them to search entry keys. Note that once
you’ve found the key you’re searching, you must hit RET to quit the search and again RET to make the
entry you found active. Ebib does not update the entry buffer during incremental search, as this would
be rather pointless: you’re only interested in the entry you’re searching for, not in the entries you pass
along the way.

Of course, it is also possible to search the database itself. If you type /, Ebib asks you for a search term.
is can be a regular expression, to allow for flexibility in searching. Aer hiing RET, Ebib will start
searching the database (starting from the current entry, not from the first entry!) and will display the
entry with the first occurrence of the search string that it finds. All the occurrences of the search string
in that entry are highlighted.

Ebib searches all the fields of each entry. It is not possible with / to specify the fields to search. Note
that if the search term is found in a field with a multiline value, Ebib will highlight the + sign that it
displays in front of the field value. Keep an eye out for this when doing a search, because Ebib only
shows the first line of multiline values, and if the search term appears in another line, the highlighted
+ is the only indication that the search term was found. (Well, that and the fact that Ebib does not say
Search string not found, of course…)

A search term may of course appear more than once in the database. To search for the next occurrence,
type n. is will continue searching for the search string in the rest of the database. Again, the first
entry found to contain the search string is displayed. Note that n does not wrap: if the end of the
database is reached, Ebib stops searching. To continue searching from the top, hit g and then n.

e functions described here form Ebib’s basic search functionality. Ebib also has a muchmore powerful
search mechanism in the form of virtual databases. ese are described later. (See Virtual Databases.)

LaTeX Integration

Having a BibTeX database manager running inside Emacs has an additional advantage: it makes it
trivially easy to insert BibTeX keys in your LaTeX documents. In fact, this functionality doesn’t just
workwith LaTeX, but alsowith other textmodes that have some form of citation commands, as discussed
below.

7

Ebib provides two functions for this. First, if you’re in a LaTeX buffer, you can call the function
ebib-insert-bibtex-key. When you invoke this command, Emacs prompts you for a key from
the database(s) associated with the current buffer, a citation command (that has to be typed without
the backslash) and any optional argument(s) the command allows. You can type the key using TAB-
completion, and aer hiing RET, Emacs puts a BibTeX citation at the cursor position in the current
buffer with the key you selected.

You can also do it the other way around: if you’re in the index buffer in Ebib, you can push an entry
to a LaTeX buffer. To do this, use the command p. Ebib will ask you for a buffer to push the entry to,
a citation command and also any optional arguments, and then insert a citation at the current cursor
position in the buffer you’ve supplied.

e citation command that ebib-insert-bibtex-key and the command key p ask for have to be
defined before you can use them. (By default, only the \cite command has been predefined for LaTeX.)
For details on seing this up, see Citation Commands.

Another Ebib command is available for LaTeX documents: the command ebib-create-bib-from-bbl
creates a .bib file from the .bbl file associated with LaTeX document in the current buffer. is makes
it easy to create a .bib file containing just the BibTeX entries that are used in the document. (One
disadvantage is that cross-referenced entries aren’t always in the .bbl file, depending on how your
BibTeX style handles them. Aer using ebib-create-bib-from-bbl it may therefore be necessary
to check whether you have all cross-referenced entries.)

ere is another function that is available outside Ebib: ebib-entry-summary. is command reads
the key under the cursor in the current buffer and displays the field values associated with that key in
a *Help* buffer. is allows you to quickly check a reference in a text.

Probably the easiest way to use both ebib-insert-bibtex-key and ebib-entry-summary is to bind
them to a key sequence. For example, you could put the following in your ~/.emacs:

(add-hook 'LaTeX-mode-hook #'(lambda ()
(local-set-key "\C-cb" 'ebib-insert-bibtex-key)))

is binds C-c b to the command ebib-insert-bibtex-key in AUCTeX’s LaTeX mode. (Note that
commands of the form C-c <letter> are reserved for the user, and should therefore not be set by any
package. For this reasons, Ebib does not set this command automatically.)

Orgmode and markdown

Orgmode can handle various types of links and new link types can be created by the user. If you use
orgmode to write papers and want to use bibliographic references, it is easy to set up orgmode to use
Ebib. If you add the following line to ~/.emacs:

(org-add-link-type "ebib" 'ebib)

you can create org links of the following form:

[ebib:Jones1992][Jones (1992)]

8

http://orgmode.org

Orgmode will display this link simply as Jones (1992) in your buffer. If you click this link (or press
C-c C-o on it), you will be taken to Ebib and shown the the entry Jones1992 in the active database.

A citation string for orgmode is predefined, so you can use ebib-insert-bibtex-key in orgmode
buffers to insert links of the type above into your orgmode documents.

Note that such org links aren’t properly translated to LaTeX citation commands when you export your
org file. For that, you’ll need to set up a different link type for each citation command and provide
functions for exporting them to LaTeX. e orgmode documentation explains how this is done.

Another document format that provides support for automatically generating citations is Pandoc mark-
down. Pandoc’s handling of citations is more sofisticated than orgmode’s, as it can automatically trans-
late citations in markdown text into LaTeX (specifically: natbib or biblatex) commands, but it also
supports citations when converting to other document formats. In order to use Ebib with Pandoc mark-
down, nothing needs to be set up: Ebib has predefined citation formats for the citations forms that
Pandoc markdown supports: text, paren and year. e text format produces citations of the form
@Abney1987 [p. 50], the paren format produces [cf. @Abney1987, p. 50] and the year format,
which suppresses the author in the (LaTeX/html/what have you) output, produces [-@Abney1987 p.
50]. Of these three, the paren type can contain multiple citations (e.g., [cf. @Abney1987, p. 50;
@Dahl2004, p. 204]), which Ebib can handle as well. See Citation Commands for further details.

Consulting Databases from within a LaTeX File

e commands ebib-insert-bibtex-key and ebib-entry-summary must consult the database or
databases loaded in Ebib, and Ebib tries to be smart about which database(s) to consult. Usually, a
LaTeX file has a \bibliography command somewhere toward the end, which names the .bib file
or files that contain the bibliography entries. If you consult a BibTeX database from within a LaTeX
file, Ebib first looks for a \bibliography command, reads the .bib files from it, and then sees if
those files happen to be open. If they are, Ebib uses them to let you pick an entry key (in the case of
ebib-insert-entry-key) or to search for the entry (in the case of ebib-entry-summary).

Of course, it may be the case that the LaTeX file is actually part of a bigger project, and that only the
master file contains a \bibliography command. To accommodate for this, Ebib checks whether the
(buffer-local) variable TeX-master is set to a filename. If it is, it reads that file and tries to find the
\bibliography command there. (Note: TeX-master is an AUCTeX variable, which is used to keep
track of multi-file projects. If you don’t use AUCTeX, this functionality doesn’t work, and Ebib will only
check the current file for a \bibliography command.)

Note that if one of the .bib files in the \bibliography command isn’t loaded, Ebib issues a warning
message about this, and continues to check for the next .bib file. ese warning messages appear in the
minibuffer, but are probably directly overwrien again by further messages or prompts Ebib produces,
so check the *Messages* buffer if Ebib doesn’t seem to be able to find an entry that you’re sure is in
one of your databases.

Another thing to keep in mind is that Ebib only looks for a \bibliography command once: the first
time either ebib-insert-bibtex-entry or ebib-entry-summary is called. It stores the result of this
search and uses it the next time either of these commands is used. erefore, if you make a change to
the \bibliography command, you must reload the file (use M-x revert-buffer) to make sure Ebib
rereads the \bibliography command.

If no \bibliography command is found at all, either in the LaTeX file itself, or in the master file, Ebib
simply consults the current database, i.e. the database that was active when Ebib was lowered with z.

9

http://johnmacfarlane.net/pandoc/

Cross-referencing

BibTeX has a cross-referencing facility. Suppose you have an entry jones1998, which appeared in a
book that is also in your database, say under miller1998. You can tell BibTeX that jones1998 is con-
tained in miller1998 by puing miller1998 in the crossref field. When BibTeX finds such a cross-
reference, all the fields of jones1998 that don’t have a value inherit their values from miller1998. At
the very least, this saves you some typing, but more importantly, if two or more entries cross-reference
the same entry, BibTeX automatically includes the cross-referenced entry in the bibliography (and puts
a reduced reference in the cross-referencing entries).

When you fill in the crossref field in Ebib, Ebib displays the values of the cross-referenced
entry in the entry buffer. To indicate that they are just inherited values, they are marked with
ebib-crossref-face, which by default is red. (You can customise it, of course. See the customi-
sation option Crossref Face.) ese values are just displayed for convenience: otherwise, Ebib treats
these fields as if they are empty. at is, they cannot be edited (to edit them, you need to edit the
cross-referenced entry), and it’s not possible to copy these values to the kill ring.

If you’re viewing an entry that has a cross-reference and you want to go to the cross-referenced entry
you can type F. is command reads the value of the crossref field and then displays that entry. If
you want to do the reverse, i.e., see if the current entry is cross-referenced by any other entries, you
can use the same key F: if you type F on an entry that does not have a cross-reference, Ebib makes the
key of the current entry the current search string and searches for its first occurrence aer the current
entry. Note that aer Ebib has jumped to the first cross-referencing entry, you cannot type F again to
find the next one. is command will take you back to the cross-referenced entry. In order to find the
next cross-referencing entry, you have to type n, as with a normal search.

Note that if you want to use BibTeX’s cross-referencing options, you need to set the option Save Xrefs
first. is tells Ebib to save all entries with a crossref field first in the .bib file. Without this, BibTeX’s
cross-referencing will not work reliably.

Selecting Entries

Commands in the index buffer generally operate on one single entry, or on all entries. For some, how-
ever, it may sometimes be useful to perform them on more than one entry, but not necessarily all of
them. is can be achieved by selecting entries. You can select the entries you want to perform a com-
mand on with the key m. is selects (or unselects) the current entry. Selected entries are displayed in
inverse video. Note that the face properties of selected entries can be customised through the customi-
sation option Selected Face.)

Of the commands discussed so far, two can be used on selected entries: d and p. Note, however, that it is
not enough to select the entries you want and then type any of these commands. If you do so, they will
behave as if no entries were selected. To get these commands to work on the selected entries, you have
to type a semicolon before them. at is, ; d deletes all selected entries, ; p pushes all selected entries
to a LaTeX buffer. e command m itself can also be used with the ; prefix. If there are any selected
entries, ; m unselects them all. Otherwise, ; m selects all entries.

When using ; p to push all selected entries to a LaTeX buffer, they are put in a single citation command,
separated by commas. Ebib does not create a citation command for each entry separately.

10

Printing the Database

Sometimes it may be useful to have a .pdf file or print-out of your database. Although Ebib does not
actually do the printing itself, it can create a LaTeX file for you that you can compile and print. In fact,
there are two ways of doing this.

e print options are available in the Ebib menu when the index buffer is active. You can print the
entries as index cards or as a bibliography.

If you print your entries as a bibliography, Ebib creates a simple LaTeX document that essentially con-
tains a \nocite{*} command followed by a \bibliography command referring to the .bib file be-
longing to the current database. You can then run the usual sequence of LaTeX, BibTeX, LaTeX, LaTeX
on this file, creating a document containing a list of all the references in your database.

If you choose to print as index cards, Ebib also creates a LaTeX file. However, instead of simply providing
a \nocite{*} command, this file contains a tabular environment for each entry in the database listing
all the fields of that entry and their values.

e entries are separated by a \bigskip, but if you set the option Print Newpage in the customisation
buffer (or in the Print menu), the entries are separated by a \newpage, so that every entry is on a
separate page. e laer option is useful when printing actual index cards (though you’d probably have
to change the page size with the geometry package as well).

By default, the index cards only show single-line field values. at is, multiline values are normally
excluded. If you want to include multiline values in the print-out, you have to set the option Print
Multiline in the Options menu or in Ebib’s customisation buffer. (See e Customisation Buffer.)
With this option set, Ebib includes all multiline values in the LaTeX file that it creates. Note however
that Ebib does not change anything about the formaing of the text in a multiline value. So if you plan
to make (heavy) use of this option, make sure that the way you type your text conforms to LaTeX’s
conventions (e.g. empty lines to mark paragraphs, etc.) and doesn’t contain any characters such as &
that are illegal in LaTeX. (Or, alternatively, use LaTeX code in your multiline fields.)

As mentioned, when you “print” the database, Ebib really just creates a LaTeX file. More precisely, it
creates a temporary buffer and writes the LaTeX code into it, and then saves the contents of that buffer
to a file. Aer it has done that, Ebib lowers itself and instruct Emacs to open the file in a buffer, which
will then be properly set up as a LaTeX buffer. From there you can run LaTeX and view the result.

Before doing all this, Ebib asks you which file to write to. Be careful with this: since this is supposed
to be a temporary file, Ebib simply assumes that if you provide a filename of an existing file, it can
overwrite that file without warning!

A beer way to tell Ebib which file to use is to set the option Print Tempfile in Ebib’s customisation
buffer to some temporary file. When this option is set, Ebib will always use this file to write to, and will
not ask you for a filename anymore.

Note that both print options operate on all entries of the database. If there are selected entries in the
database, however, only those are printed.

ere are two more customisation options for printing the database. ese are Print Preamble
and LaTeX Preamble. With these options, you can specify what Ebib should put in the preamble
of the LaTeX files it creates. Use this if you want to use specific packages (e.g. \usepackage{a4} or
\usepackage{times}). is is especially useful for printing a bibliography, since by default, Ebib uses
BibTeX’s standard bibliography style. With the option LaTeX Preamble you can set your preferred
bibliography style. Details are discussed in the chapter on customisation, seee Customisation Buffer.

11

Calling a Browser

With more and more scientific literature becoming available on-line, it becomes common to store URLs
and DOIs in a BibTeX database. Sometimes you may want to load such a URL or a DOI in your browser.
Ebib provides a convenient way for doing so.

If you type u in the index buffer, Ebib takes the first URL stored in the url field of the current entry and
passes it to your browser. Furthermore, in the entry buffer, you can use u on any field. If you happen
to have more than one URL stored in the relevant field, and you want to pass the second (or third, etc.)
to the browser, you can use a prefix argument. So typing M-2 u sends the second URL to your browser,
M-3 u the third, and so on.

It is not even necessary that the relevant field contains only URLs. It may contain other text mixed with
the URLs: Ebib simply searches the URLs in the field and ignores the rest of the text. Ebib considers
every string of characters that starts with http:// or https:// and that does not contain whitespace
or any of the characters " ' < or > as a URL. Furthermore, Ebib regards everything that is enclosed in
a LaTeX \url{...} command as a URL. is behaviour is controlled by a regular expression that can
be customised. (See Url Regexp.)

Similarly, with the key i in the index buffer you can send a DOI to a browser. e DOI must be stored
in the doi field. Ulike URLs, there can only be one DOI in this field. e whole contents of the field is
assumed to be the DOI and is sent to the browser unchanged. A DOI is normally resolved through the
URL http://dx.doi.org/, but if you prefer a different URL, you can customize the option Doi Url.

ere exists an Emacs function browse-url, which provides a niy interface to calling an external
browser. In principle, Ebib uses this function. However, if this function is not present on your installa-
tion, you can set the option Browser Command to call the browser.

As just explained, if you press u in the index buffer, Ebib searches the url field of the current entry
for URLs. If you have the habit of puing your URLs in another field, however, you may change the
customisation option Standard Url Field and tell Ebib to use another field for searching the URLs. e
same can be done for the DOI field.

Viewing Files

If you have electronic versions of the papers in your database stored on your computer, you can use
Ebib to call external viewers for these files. e interface for this is similar to that for calling a browser:
if you press f in the index buffer, Ebib searches the file field for a filename and when it finds one, calls
an appropriate viewer.

Just as with u, you can use f in the entry buffer as well, in which case it can be used on any field, not
just the file field. It is also possible to have more than one filename in a field: you can select the one
you want to view with the prefix argument.

Just as in the case of URLs, you can customise several things about the file view functionality. e option
Standard File Field allows you to customise the field that f extracts filenames from when pressed in the
index buffer. Extracting filenames is done with a regular expression, which can be customised through
the option File Regexp.

e option File Search Dirs allows you to tell Ebib which directories it needs to search for files. e
default value is ~, which means Ebib just looks in your home dir. Since this is probably not where you
keep your files, you may want to customise this. Note that you can specify more than one directory.

12

Note that Ebib does not search directories recursively. It is possible, however, to put subdirectories in
the filenames. at is, if you put something like a/Abney1987.pdf in the file field, Ebib searches for
the relevant file in a subdirectory a/ of the directories listed in the option File Search Dirs. As an extra
service, Ebib also searches for the base filename, i.e., Abney1987 in this particular case. is can come
in handy when you keep the papers on your reading list in a separate directory.

Ebib can call different external programs depending on the file type of the relevant file, but you have to
specify which programs to call. e option File Associations allows you to do this. By default, .pdf and
.ps files are handled, by xpdf and gv, respectively. You can specify further file types by their extensions
(do not include the dot). e program is searched for in PATH, but you can of course specify the full
path to the program.

Advanced Features

e features discussed in the previous chapter should be sufficient to get started using Ebib. However,
Ebib has several more advanced features, which are described in this chapter.

Screen Layout

By default, Ebib takes over the entire Emacs frame it is started in. If you have a wide enough screen,
however, it may be more convenient to have Ebib take up only part of the frame, so that you can have
the LaTeX text you’re working on and Ebib visible at the same time. e option Layout allows you to
do this, by giving you the ability to choose between a full-frame or a split-frame layout.

In the split-frame layout, the Ebib windows are displayed on the right of the current frame, with the le
part free for your document. In this layout, some aspects of Ebib behave somewhat differently. Most
importantly, the multiline edit buffer is not displayed in the lower Ebib window, but in the non-Ebib
window on the le. (Obviously, aer leaving the multiline edit buffer, the original buffer is restored to
that window.)

Furthermore, pressing z in the index buffer leaves Ebib, but keeps the buffers visible. You can get back to
Ebibwith the command M-x ebib (or any key bound to it, of course), or simply bymanually switching to
the index buffer. If you want to remove the Ebib buffers from the frame but keep Ebib in the background,
you can use Z (i.e. uppercase Z) in the index buffer. (Note that Z is also available in the full-frame layout,
but there it is identical to z.)

Lastly, the command ebib-entry-summary checks whether the Ebib buffers are visible in the frame. If
they are, it does not output the entry info in a *Help* buffer, but rather displays the entry in Ebib itself.

Preloading .bib Files

Chances are that you will be doing most of your work with one or a few .bib files, and you may find
yourself opening the same file or files every time you start Ebib. If so, you can tell Ebib to always load
specific .bib files on startup. To do this, specify the files in Ebib’s customisation buffer, under the option
Preload Bib Files.

By default, .bib files are searched for in your home directory. Since this is most likely not where you
keep the files, you need to specify either the file’s full path or a relative path starting from your home

13

directory. Alternatively, you can customize the option Preload Bib Search Dirs to specify one or more
directories in which Ebib should search the .bib files.

@Preamble Definition

Apart from database entries, BibTeX allows three more types of elements to appear in a .bib file. ese
are @comment, @preamble and @string definitions. Ebib provides facilities to handle the laer two.
@comment definitions cannot be added to a .bib file through Ebib, and if Ebib finds one in a .bib file,
it is simply ignored (and dropped from the file when you save it).

@preamble and @string definitions can be handled, however. Ebib allows you to add one @preamble
definition to the database. In principle, BibTeX allows more than one such definition, but really one
suffices, because you can use the concatenation character # to includemultiple TeX or LaTeX commands.
So, rather than having two @preamble definitions such as:

@preamble{ "\newcommand{\noopsort}[1]{} " }
@preamble{ "\newcommand{\singleletter}[1]{#1} " }

you can write this in your .bib file:

@preamble{ "\newcommand{\noopsort}[1]{} "
"\newcommand{\singleletter}[1]{#1} " }

Creating or editing a @preamble definition in Ebib is done by hiing P (uppercase P) in the index buffer.
Ebib uses the multiline edit buffer for editing the text of the @preamble definition, which means that as
discussed above, C-c | q stores the @preamble text and returns focus to the index buffer, while C-c
| c returns focus to the index buffer while abandoning any changes you may have made. (For details
on using the multiline edit buffer, see e Multiline Edit Buffer.)

In order to create a @preamble as shown above in Ebib, you only have to type the text between the
braces. Ebib takes care of including the braces of the @preamble command, but otherwise it saves the
text exactly as you enter it. So in order to get the preamble above, you’d have to type the following in
Ebib:

"\newcommand{\noopsort}[1]{} " # "\newcommand{\singleletter}[1]{#1} "

Note that when Ebib loads a .bib file that containsmore than one @preamble definition, it concatenates
all the strings in them in the manner just described and saves them in one @preamble definition.

@String Definitions

If you press S (that’s a uppercase S) in the index buffer, Ebib hides the entry buffer in the lower window
and replaces it with the strings buffer. In this buffer, you can add, delete and edit @string definitions.

Adding a @string definition is done with the command a. is will first ask you for an abbreviation
and then for the value to be associated with that abbreviation. Once you’ve entered these, Ebib will sort
the new abbreviation into the buffer.

14

Moving between the @string definitions can be done in the usual way: the cursor keys up and down,
C-p and C-n and k and j move up and down. Space and PgDn move ten strings down, while b and
PgUp move in the other direction. e keys g, G, Home and End also function as expected.

To delete a @string definition, use d. To edit the value of a definition, use e. ere is also a command
c, which copies the value of the current @string definition to the kill ring. Unlike in the entry buffer,
there are no corresponing commands y and x. (In fact, x does exist, but has another function.) Yanking
from the kill ring can be done with C-y/M-y in the minibuffer when you edit a @string’s value. Cuing
a @string’s value is pointless, because a @string definition must have a value.

Having defined @string definitions, there must of course be a way to use them. Just giving a field a
string abbreviation as value will not do, because Ebib puts braces around the value that you enter when
it writes the .bib file, so that BibTeX will not recognise the abbreviation, and will not expand it. BibTeX
will only recognise an abbreviation if it appears in the .bib file outside of any braces.

To accomplish this, you must mark a field’s value as raw. A raw field is a field whose value is not
surrounded by braces when the database is saved, so that BibTeX recognises it as an abbreviation. To
mark a field raw, press r. An asterisk will appear before the field, indicating that it is raw. Pressing r
again will change the field back to normal. If you press r on a field that does not have a value yet, Ebib
will ask you for one.

Note that this also makes it possible to enter field values that are composed of concatenations of strings
and abbreviations. e BibTeX documentation for example explains that if you have defined:

@string{WGA = "World Gnus Almanac"}

you can create a BibTeX field like this:

title = 1966 # WGA

which will produce “1966 World Gnus Almanac”. Or you can do:

month = "1~" # jan

which will produce someting like “1 January”, assuming your bibliography style has defined the abbre-
viation jan. All this is possible with Ebib, simply by entering the exact text including quotes or braces
around the strings, and marking the relevant field as raw.

An easy way to enter a @string abbreviation as a field value is to use the key s instead of e. If you
type s, Ebib asks you for a @string abbreviation to put in the current field, and automatically marks
the field as raw. With this command, Ebib only accepts @string definitions that are in the database, so
that by using s you can make sure you don’t make any typos. Note that you can use tab completion to
complete a partial string.

Managing keywords

Ebib provides some options for handling keywords. By default, there is a keyword field in the list of
additional fields. Editing this field is a bit different from other fields, however. Instead of just entering
a string and hiing ENTER to store it and return to the entry buffer, you should enter a single keyword

15

and hit enter. e keyword will then be added to the keywords already present and you are asked to
enter the next keyword. If you’ve added all keywords you want, you just hit ENTER to finish.

e advantage of doing it this way is that you can reuse keywords: once you’ve added a keyword to
one entry, Ebib remembers it. e next time you want to use the same keyword for a different entry,
you just need to type the first (few) leers, hit TAB and the keyword will be completed. at makes it
easier to ensure you use the exact same keywords in different entries.

Note that Ebib’s keyword functionality is not used to check the contents of keyword fields. It is simply a
way to make it easier to stick to specific keywords, which should make it easier to categorise and search
your entries. It is still possible to edit the keyword field directly. To do so, use a prefix argument: C-u
e (or any other prefix argument) on the keyword field will allow you to edit the entire contents in the
normal way. Use this method if you want to remove single keywords. (Blanking the entire keyword
field is quicker with x or d.)

Remembering keywords is practical, but it is even more useful if remembered keywords can be saved,
so that they are available the next time you start Ebib. ere are two ways of doing this: first, there is
an option ebib-keywords-list that you can use to store keywords. (See Keywords List.) Keywords
stored in this option will be available for TAB completion to all databases in Ebib. New keywords,
however, will not automatically be stored. If you find you need a keyword not on the list and want to
make it permanent, you’ll have to add it to ebib-keywords-list yourself.

e other way of making keywords permanent is by storing them in a file. Ebib offers two ways of
doing this (which are mutually exclusive, so you have to choose one). You can either configure a sin-
gle keyword file, with keywords that are available to all databases, or you can configure per-directory
keyword files, with keywords that are available for all .bib files in the same directory. You can set up
keyword files by configuring the option Keywords File. You can either set it to use a single keyword file,
in which case you need to specify a file with its full path, or you can use per-directory keyword files, in
which case you must provide a filename without a path. at is, if you use per-directory keyword files,
the files have the same name in each directory. e default name is ebib-keywords.txt, but you can
change that if you like, of course.

Keyword files have a very simple format: they are text files with one keyword per line. So you can easily
create or edit keyword files by hand, or have them autogenerated by some other programme. Keep in
mind, though, that Ebib does not check for changes to keyword files. If you have a single keyword
file, it is loaded when Ebib starts up; per-directory keyword files are loaded when the first .bib file in
that directory is opened. If you open a second .bib file from the same directory, Ebib won’t reload the
keywords file.

When you close a database, Ebib checks if you have added new keywords to it and asks you if you want
to save them. You can tell Ebib to save new keywords automatically by seing the option Keywords File
Save On Exit to always. Note that this doesn’t save the keywords when you enter them, only when you
close the database or quit Ebib. You can also set this option to never, whichmeans Ebib will discard new
keywords when the database is closed. Note that there are also two menu options for saving keywords.

e option Keywords Use Only File controls whether Ebib uses only the keyword file, or both the key-
word file and the configured keyword list. is option is only useful when you have configured a
keyword file. In that case, seing this option to use both the keyword list and the keyword file tells Ebib
to offer keywords from both sources when you edit the keyword field. Otherwise, only the keyword file
is used.

It is also possible to tell Ebib to sort the keywords in the keywords field in alphabetical order. Set the op-
tion Keywords Field Keep Sorted if you want to do this. Note that seing this option also automatically
removes duplicates.

16

Lastly, you can configure the separator used between keywords in the keyword field. By default, it is
set to "; ", i.e., semicolon plus space. If you change it, keep in mind that Ebib does not add a space
between keywords, so if you want a space, make sure to add it to the separator.

Sorting the .bib File

By default, the entries in the database are saved to the .bib file in alphabetical order according to entry
key. If you only deal with the .bib file through Ebib, you may not care in which order the entries are
saved. However, it may sometimes be desirable to be able to specify the sort order of entries in more
detail. (Apparently, this can be useful with ConTeXt, for example.)

You can specify a sort order in Ebib’s customisation buffer. To sort the entries, you must set at least one
sort level (that is, a field to sort the entries on). You can also specify more than one sort level: if two
entries have identical values for the first sort level, they will be sorted on the second sort level. E.g., if
the first sort level is author and the second is year, then the entries are sorted by author, and those
entries that have identical values for the author field are sorted by year.

A sort level is not restricted to a single field. You can specify more fields for a single sort level. Within
a single sort level, a second sort field is used if the first sort field does not have a value. For example,
books that have an editor instead of an author will have an empty author field. If you sort the database
on the author field, such entries will all appear at the beginning of the .bib file, which is most likely
not what you want.

To remedy this, you can specify both the author and the editor fields for the first sort level. Ebib will
then sort an entry on its author field if it has a value, and will otherwise use the value of the editor
field.

e difference between two sort fields within one sort level and two sort levels is that a second sort
field is an alternative for the first field when it has no value, while a second sort level is an additional
sort criterion when two or more entries cannot be sorted on the first level, because they have identical
values.

By default, the option Sort Order has no value, which means that the entries in the .bib file are sorted
according to entry key. ose that wish to customise the sort order will usually want to set the first sort
level to author editor, and the second to year. In that way, the entries in the .bib file are sorted
according to author/editor, and entries with the same author/editor are sorted by year.

Entries that cannot be sorted on some sort level, because the sort fields are empty, are sorted on entry
key. (Keep in mind that if the first sort level yields no value for a specific entry, Ebib does not use the
second sort level to sort that entry. It uses the entry key. e second sort level is only used if the first
yields identical values for two or more entries.)

Note that if you have set the option Save Xrefs First (see Cross-referencing), it is pointless to set
a sort order. Saving cross-referencing entries first messes up any sort order, so Ebib simply ignores the
sort order if Save Xrefs First is set.

Merging and Importing

As described in the previous chapter, adding entries to a database can be done manually with the key a.
ere are other ways of adding entries to a database, however.

17

In the index buffer, the Ebib menu has an option to merge a second .bib file into the current database.
Ebib reads the entries in this file and adds them to the database. Duplicate entries (that is, entries with
an entry key that already exists in the database) will not be loaded. Ebib logs a warning about each
duplicate entry to its log buffer and displays a warning aer loading the .bib file when this happens.

Another way to add entries to a database is to import them from an Emacs buffer. If, for example, you
find ready-formaed BibTeX entries in a text file or e.g. on the internet, you can copy & paste them
to any Emacs buffer (e.g. the *scratch* buffer), and then execute the command M-x ebib-import.
Ebib then goes through the buffer and loads all BibTeX entries it finds into the current database (i.e. the
database that was active when you lowered Ebib). If you call ebib-import while the region is active,
Ebib only reads the BibTeX entries in the region.

Exporting Entries

Sometimes it can be useful to copy entries from one database to another, or to create a new .bib file
with several entries from an existing database. For this purpose, Ebib provides exporting facilities. To
export an entry to a .bib file, use the command x. Ebib will ask you for a filename to export the entry
to. (If you have already exported an entry before, Ebib will present the filename you used as default,
but you can of course change it.)

For obvious reasons, Ebib appends the entry to the file that you enter if it already exists, it does not
overwrite the file. If this is not what you want, delete the file first, as Ebib provides no way to do this.

If you have more than one database open in Ebib, it is also possible to copy entries from one database to
another. To do this, use the x command with a numeric prefix argument. E.g., if the database you want
to export an entry to is the second database, type M-2 x to export the current entry to it. e number
of the database is given in the modeline of the index buffer.

If the database you’re copying an entry to already contains an entry with the same entry key, Ebib won’t
copy the entry, and issues an appropriate warning message.

Note that the command x can operate on selected entries. So to export several entries in one go select
them and type ; x. You can use a prefix argument in the normal way: M-2 ; x exports the selected
entries to database 2.

Apart from entries, it is also possible to export the @preamble and @string definitions. e @preamble
definition is exported with the command X in the index buffer. @string definitions can be exported in
the strings buffer: x in this buffer exports the current string, while X exports all @string definitions
in one go. All these commands function in the same way: when used without a prefix argument, they
ask for a filename, and then append the relevent data to that file. With a numeric prefix argument, they
copy the relevant data to the corresponding open database.

Timestamps

Ebib provides the possibility to add a timestamp to every new entry, recording the time it was added
to the database. e timestamp is recorded in the (additional) field timestamp. (By default, this field
is not shown, but you can make it visible by checking the option “Show Hidden Fields” in the Options
menu.)

You can tell Ebib to create timestamps by seing the option Use Timestamp in Ebib’s customisation
buffer. With this option set, a timestamp is included in entries added to the database with a. Ebib will

18

also add a timestamp to entries imported from a buffer or merged from a file, and to entries exported
to another database or to a file. When importing or exporting entries, existing timestamps will be
overwrien. e logic behind this is that the timestamp records the date and time when the entry was
added to the database, not when it was first created.

Note that if this option is unset, the timestamp of an entry is retained when it’s imported or exported.
erefore, if you record timestamps and want to im-/export entries without changing their timestamps,
temporarily unset this option.

Ebib uses the function format-time-string to create the timestamp. e format string that Ebib uses
can be customised in Ebib’s customisation buffer. e default string is "%a %b %e %T %Y", which
produces a timestamp of the form "Mon Mar 12 01:03:26 2007". Obviously, this string is not suited
for sorting, so if you want to be able to sort on timestamps, you’ll need to customise the format string.
See the documentation for format-time-string on the options that are available.

Multiple Identical Fields

Under normal circumstances, a BibTeX entry only contains one occurrence of each field. If BibTeX
notices that an entry contains more than one occurrence of an obligatory or optional field, it issues a
warning. Ebib is somewhat less gracious, it simply takes the value of the last occurrence without giving
any warning. (Note, by the way, that BibTeX will use the value of the first occurrence, not the last.)
When additional fields appear more than once in an entry, BibTeX does not warn you, since it ignores
those fields anyway. Here, too, Ebib’s standard behaviour is to ignore all but the last value.

However, some online reference management services “use” this feature of BibTeX in that they put
multiple keywords fields in the BibTeX entries that they produce. If you were to import such an entry
into Ebib, you would lose all your keywords except the last one. To remedy this, you can tell Ebib that
it should allow multiple occurrences of a single field in a BibTeX entry. You can do this by seing the
customisation option Allow Identical Fields.

With this option set, Ebib collapses the multiple occurrences into a single occurrence. All the values
of the different occurrences are collected and stored in the single occurrence, separated by semicolons.
at is, Ebib does not retain the multiple occurrences, but it does retain the values. So suppose you have
an entry that contains the following keywords fields:

@book{jones1998,
author = {Jones, Joan},
year = {1998},
...
keywords = {sleep},
keywords = {winter},
keywords = {hybernation}

}

If you load this entry into Ebib with the option Allow Identical Fields set, you will get the follow-
ing:

@book{jones1998,
author = {Jones, Joan},
year = {1998},

19

...
keywords = {sleep; winter; hybernation}

}

Virtual Databases

In the previous chapter, Ebib’s basic search functionality was discussed. (See Searching.) Ebib also
provides a much more sophisticated search and filtering mechanism in the form of virtual databases.

A virtual database is a database that is not associated with any .bib file. Rather, it is created from
another database by selecting entries from it based on a specific search paern, called a filter. is
allows you, for example, to select all entries from a database that contain the string “Jones” in their
author field. A filter can be as complex as you want: you can select all entries that do not contain
“Jones” in the author field, or all entries that contain “Jones” in either the author or the editor field,
or all entries that contain “Jones” in the author field, and “symbiotic hybernation” in the keyword field,
etc. Basically, the filter can consist of an arbitray number of search criteria combined with the logical
operators and, or and not.

Simple Selection

Creating a virtual database is simple: press &, and Ebib will ask you for a field to select on, and for a
regular expression to select with. So if you want to select all entries that contain “Jones” in the author
field, you press & and type author as the field and Jones as the regexp to filter on.

Ebib will then create a virtual database containing the entries matching your selection criterion. A
virtual database has the same name as the database it is based on, prepended with V:. It also has a
number like any other database, and you can move back and forth to other databases with the number
or cursor keys.

If you don’t want to filter on one specific field but rather want to select all entries that match a certain
regexp in any field, you can type any as the field to filter on. So specifying any as the field and Jones
as the regexp, the virtual database will select all entries that have a field that contains “Jones” in them.

Complex Filters

Once you have a virtual database, it remains associated with the database it was created from. is
means that you can refine or extend the selection (i.e. the filter) that the virtual database is based on. If,
in the current example, you want to include all the entries that have “Jones” in the editor field, you
have to perform a logical or operation: you want to select an entry if it contains “Jones” in the author
field (which you already did) or if it contains “Jones” in the editor field.

A short sidenote: the first impulse in a case like this might be to use and instead of or: aer all, you
want to select all entries that contain “Jones” in the author field and all entries that contain “Jones” in
the editor field. However, the filter that you build up is used to test each entry individually whether it
meets the selection criterion. An entry meets the criterion if it contains “Jones” in the author field or if
it contains “Jones” in the editor field. erefore, or is the required operator in this case. If you would
use and, you would only get those entries that contain “Jones” in both the author and editor fields.

20

To perform a logical or operation, press the key |. As before, you will be asked which field you want
to filter on, and which regexp you want to filter with. Ebib will then update the virtual database with
all entries in the original database that match the additional criterion.

It is also possible to perform a logical and on the virtual database. Use this if you want to select those
entries that contain “Jones” in the author field and e.g. “symbiotic hybernation” in the keyword field.
A logical and operation is done with the key &. (Note: this is the same key that is used to create a virtual
database. In fact, you can also create a virtual database with |: when used in a normal database, & and
| are equivalent. ey are only different in virtual databases.)

Both the & and | commands can be used with the negative prefix argument M-- (or C-u -, which is
identical). In this case, the search criterion is negated. at is, the negative prefix argument performs a
logical not operation on the search criterion.

at is, if you want to select all entries from a database that do not contain “Jones” in the author field,
you can do this by typing M-- & and then filling out the relevant field and regexp. is prefix argument
is available both in real and in virtual databases.

ere is another way of performing a logical not operation, which is only available in virtual databases:
by pressing the key ~, you invert the current filter. at is, if you have a virtual database with all the
entries containing “Jones” in the author or in the editor field, and you press ~, the selection is inverted,
and now contains all entries that do not have “Jones” in the author or editor field.

Although ~ and the negative prefix argument to & or | both perform logical not operations, they are not
equivalent: ~ negates the entire filter built up so far, while the negative prefix argument only negates
the single selection criterion you enter with it.

If you want to know what the filter for the current virtual database is exactly, you can type V. is com-
mand displays the current filter in the minibuffer. e filter is specified as a Lisp expression, meaning
that the operators appear before their operands, not in between them. at is, x and y is wrien as
(and x y).

With a prefix argument (any prefix argument will do), the command V not only displays the current
filter, but also reapplies it. is can be useful when you’ve made changes to the source database: Ebib
does not automatically update a virtual database when its source database is modified.

Properties of Virtual Databases

Virtual databases differ from normal databases in several ways. First, they cannot be modified: you
cannot add or delete entries, and you cannot modify the contents of fields. It is also not possible to
import entries to them or merge another file with them. Furthermore, it is not possible to export entries
to them or from them.

A virtual database cannot be saved in the normal way with s, and the menu option to save all databases
ignores virtual databases. If you want to save a virtual database, you can use the command w. is
command not only saves the virtual database, it also changes it into a normal database, and detaches it
from its original source database, so that you can modify it without affecting the source database.

e print bibliography command also doesn’t work with virtual databases. e reason for this is that the
virtual database is not associated with an actual .bib file, so there is no file to create a list of references
from. However, it is possible to print index cards frm a virtual database.

21

e Multiline Edit Buffer

As mentioned several times before, Ebib has a special multiline edit buffer, which is used to edit field
values that contain newlines (so-called multiline fields), and also to edit the contents of the @preamble
command. is section discusses the details of this buffer.

Ebib enters multiline edit mode in one of three cases: when you edit the @preamble definition, when
you hit l in the entry buffer to edit the current field as multiline, or when you hit e on the annote field,
or on a field whose value already is multiline.

e mode that is used in the multiline edit buffer is user-configurable. e default value is text-mode,
but if you prefer to use some other mode, you can specify this through the customisation options.
(Personally, I use markdown-mode in the multiline edit buffer, so that I can use markdown to write
annotations, which provides an easy way to create headers, use bold and italic, etc., in plain text.)

ree commands are relevant for interacting with Ebib when you’re in the multiline edit buffer, which
are bound to key sequences in the minor mode ebib-multiline-edit-mode, which is activated au-
tomatically in the multiline edit buffer.

ebib-quit-multiline-edit, bound to C-c | q, leaves the multiline edit buffer and stores the text
in the database. If you invoke this command when you’ve deleted all contents of the buffer (including
the final newline!) and you were editing a field value or the @preamble, the field value or preamble is
deleted. (is is in fact the only way to delete the @preamble definition. Field values on the other hand
can also be deleted by hiing x or d on them in the entry buffer.) If you were editing a @string value,
Ebib will just complain, because string definitions cannot be empty.

ebib-cancel-multiline-edit, bound to C-c | c, also leaves the multiline edit buffer, but it does so
without storing the text. e original value of the field, string or preamble will be retained. If the text
was modified, Ebib will ask for a confirmation before leaving the buffer.

ebib-save-from-multiline-edit, bound to C-c | s, can be used in the multiline edit buffer to save
the database. is command first stores the text in the database and then saves it. Because Ebib does
not do an autosave of the current database, it is advisable to save the database manually every now and
then to prevent data loss in case of crashes. It would be annoying to have to leave the multiline edit
buffer every time you want to do this, so this command has been provided to allow you to do this from
within the buffer.

Admiedly, the key combinations of the multiline edit buffer are somewhat awkward. e reason for
this is that these commands are part of a minor mode, which restricts the available keys to combinations
of C-c plus a non-alphanumeric character. However, it is possible to change the key commands, if you
wish. Ebib itself provides a method to change the second key of these commands: see Modifying Key
Bindings for details. You could change the | to e.g., c or C-c, if these do not conflict with any key
commands in the major mode used for the multiline edit buffer.

Even more drastically, you could put something like the following in your ~/.emacs:

(eval-after-load 'ebib
'(progn

(define-key ebib-multiline-mode-map "\C-c\C-c" 'ebib-quit-multiline-edit)
(define-key ebib-multiline-mode-map "\C-c\C-q" 'ebib-cancel-multiline-edit)
(define-key ebib-multiline-mode-map "\C-c\C-s" 'ebib-save-from-multiline-edit)))

22

http://daringfireball.net/projects/markdown/

is sets up C-c C-c, C-c C-q and C-c C-s for use in the multiline edit buffer. Since such key
combinations are restricted for use with major modes, however, Ebib cannot set these up automatically,
but as an Emacs user, you are free do do as you like, of course.

e Options Menu

In the index buffer, Ebib’s menu has an Options submenu. is menu gives you quick access to Ebib’s
customisation buffer, and it also provides checkboxes for several seings that can be toggled on and off.
All of these seings have defaults that can be defined in the customisation buffer. Seing or unseing
them in the Options menu only changes them for the duration of your Emacs session, it doesn’t affect
the default seing.

e same is true for the printing options that are in the Print menu. When set or unset in the menu, the
default values specified in the customisation buffer do not change.

e Ebib Buffers

is chapter lists all the key commands that exist in Ebib, with a short description and the actual com-
mand that they call. e laer information is needed if you want to customise Ebib’s key bindings. (See
Modifying Key Bindings.)

e Index Buffer

Up go to previous entry. (ebib-prev-entry)

Down go to next entry. (ebib-next-entry)

Right move to the next database. (ebib-next-database)

Left move to the previous database. (ebib-prev-database)

PgUp scroll the index buffer down. (ebib-index-scroll-down)

PgDn scroll the index buffer up. (ebib-index-scroll-up)

Home go to first entry. (ebib-goto-first-entry)

End go to last entry. (ebib-goto-last-entry)

Return make the entry under the cursor current. Use aer e.g. C-s. (ebib-select-entry)

Space equivalent to PgDn.

1-9 jump to the corresponding database.

/ search the database. (ebib-search)

& Create a virtual database, or perform a logical and on the current virtual database. With negative
prefix argument: apply a logical not to the selectional criterion. (ebib-virtual-db-and)

| Create a virtual database, or perform a logical or on the current virtual database. With negative prefix
argument: apply a logical not to the selectional criterion. (ebib-virtual-db-or)

23

~ Perform a logical not on the current virtual database. (ebib-virtual-db-not)

? display Ebib info. (ebib-info)

a add an entry. (ebib-add-entry)

b equivalent to Pgup.

c close the database. (ebib-close-database)

d delete the current entry. (ebib-delete-entry)

; d delete all selected entries.

e edit the current entry. (ebib-edit-entry)

E edit the key of the current entry. (ebib-edit-keyname)

f extract a filename from the file field and send it to an appropriate viewer. With numeric prefix
argument, extract the n-th filename.

F follow crossref field. (ebib-follow-crossref)

g equivalent to Home.

G equivalent to End.

h show the info node on the index buffer. (ebib-index-help)

i extract a DOI from the doi field, append it to a URL and open that in a browser (ebib-browse-doi)

j equivalent to Down.

J jump to another database. is accepts a numeric prefix argument, but will ask you for a database
number if there is none. (ebib-switch-to-database)

k equivalent to Up.

l show the log buffer. (ebib-show-log)

m select (or unselect) the current entry. (ebib-select-entry)

; m unselect all selected entries.

n find next occurrence of the search string. (ebib-search-next)

N search for entries cross-referencing the current one. (ebib-search-crossref)

C-n equivalent to Down.

M-n equivalent to PgDn.

o open a .bib file. (ebib-load-bibtex-file)

p push an entry to a LaTeX buffer (ebib-push-bibtex-key)

; p push the selected entries to a LaTeX buffer.

C-p equivalent to Up.

24

M-p equivalent to PgUp.

P show and edit the @preamble definition in the database. (ebib-edit-preamble)

q quit Ebib. is sets all variables to nil, unloads the database(s) and quits Ebib. (ebib-quit)

s save the database. (ebib-save-current-database)

S show and edit the @string definitions in the database. (ebib-edit-strings)

u extract a URL from the url field and send it to a browser. With numeric prefix argument, extract the
n-th url.

V Display the filter of the current virtual database in the minibuffer. With prefix argument: reapply the
filter. (ebib-print-filter)

x export the current entry to a file, or, when used with numeric prefix argument, to another database.
(ebib-export-entry)

; x export the selected entries to a file, or, when used with a numeric prefix argument, to another
database.

C-x b equivalent to z.

C-x k equivalent to q.

X export the @preamble definition to a file or, when used with a numeric prefix argument, to another
database. (ebib-export-preamble)

z move focus away from the Ebib windows. (ebib-leave-ebib-windows)

Z put Ebib in the background. (ebib-lower)

Functions not bound to any key:

• ebib-print-filename

• ebib-customize

• ebib-merge-bibtex-file

• ebib-write-database

• ebib-save-all-databases

• ebib-print-entries

• ebib-latex-entries

• ebib-toggle-hidden

• ebib-toggle-timestamp

• ebib-toggle-identical-fields

• ebib-toggle-print-multiline

• ebib-toggle-layout

25

e Entry Buffer

Up go to the previous field. (ebib-prev-field)

Down go to the next field. (ebib-next-field)

PgUp go to the previous set of fields. (ebib-goto-prev-set)

PgDn go to the next set of fields. (ebib-goto-next-set)

Home go to the first field. (ebib-goto-first-field)

End go to the last field. (ebib-goto-last-field)

Space equivalent to PgDn.

b equivalent to PgUp.

c copy the contents of the current field to the kill ring. (ebib-copy-field-contents)

d delete the value of the current field. e deleted contents will not be put in the kill ring, and is
therefore irretrievably lost. (ebib-delete-field-contents)

e edit the current field. (ebib-edit-fields)

f extract a filename from the current field and send it to an appropriate viewer. With numeric prefix
argument, extract the n-th filename.

g equivalent to Home.

G equivalent to End.

h show the info node on the entry buffer. (ebib-entry-help)

j go to the next field. (ebib-next-field)

k go to the previous field. (ebib-prev-field)

l edit the current field as multiline. (ebib-edit-multiline-field)

C-n equivalent to Down.

M-n equivalent to PgDn.

C-p equivalent to Up.

M-p equivalent to PgUp.

q quit editing the current entry and return focus to the index buffer. (ebib-quit-entry-buffer)

r toggle a field’s “raw” status. (ebib-toggle-raw)

s insert an abbreviation from the @string definitions in the database. (ebib-insert-abbreviation)

u extract a URL from the current field and send it to a browser. With numeric prefix argument, extract
the n-th url.

x cut the contents of the current field. Like c, x puts the contents of the current field in the kill ring.
(ebib-cut-field-contents)

y yank the last element in the kill ring to the current field. Repeated use of y functions like C-y/M-y.
Note that no text will be yanked if the field already has a value. (ebib-yank-field-contents)

26

e Strings Buffer

Up go to the previous string. (ebib-prev-string)

Down go to the next string. (ebib-next-string)

PgUp go ten strings up. (ebib-strings-page-up)

PgDn go ten strings down. (ebib-strings-page-down)

Home go to the first string. (ebib-goto-first-string)

End go to the last string. (ebib-goto-last-string)

Space equivalent to PgDn.

a add a new @string definition. (ebib-add-string)

b equivalent to PgUp.

c copy the text of the current string to the kill ring. (ebib-copy-string-contents)

d delete the current @string definition from the database. You will be asked for confirmation.
(ebib-delete-string)

e edit the value of the current string. (ebib-edit-string)

g equivalent to Home.

G equivalent to End.

h show the info node on the strings buffer. (ebib-strings-help)

j equivalent to Down.

k equivalent to Up.

l edit the value of the current string as multiline. (ebib-edit-multiline-string)

C-n equivalent to Down.

M-n equivalent to PgDn.

C-p equivalent to Up.

M-p equivalent to PgUp.

q quit the strings buffer and return focus to the index buffer. (ebib-quit-strings-buffer)

x export the current @string definition to a file or, when used with a prefix argument, to another
database. (ebib-export-string)

X export all the @string definitions to a file or, when used with a prefix argument, to another database.
(ebib-export-all-strings)

27

Customisation

Ebib can be customised through Emacs’ standard customisation interface. e only thing that cannot
be customised in this way are the key bindings. If you wish to customise those, you have to use the file
~/.ebibrc.

e Customisation Buffer

Ebib’s customisation group is a subgroup of the Tex group. It can be invoked by typing M-x
customize-group RET ebib RET, or going to the Options menu and selecting “Customize Ebib”. is
chapter gives a short description of all the options available in the customisation buffer.

Default Type

Default value: article.

e default type is the default entry type given to a new entry. Every entry in the Ebib database must
have a type, because the type defines which fields are available. When a new entry is created, Ebib gives
it a default type, which can be customised through this option.

Preload Bib Files

Default value: nil.

is option allows you to specify which file(s) Ebib is to load when it starts up. Specify one file per line,
press the INS buon to add more files. You can complete a partial filename with M-TAB.

Preload Bib Sear Dirs

Default value: ~.

is is a list of directories Ebib searches for .bib files to be preloaded. Note that only the directories
themselves are searched, not their subdirectories.

Create Baups

Default value: t.

Whether to create backups of .bib files. You can unset this option if you have your files under revision
control, for example.

28

Keywords list

Default value: nil.

List of keywords to offer for TAB completion when editing the keyword field.

Keywords File

Default value: "".

File to save keywords in. is can be a single file for all .bib files, or a separate keyword file for each
directory containing .bib files. In the former case, provide a full filepath, in the laer case, a single
filename without path.

Keywords File Save On Exit

Default value: ask

Whether to save keyword files on exit. Possible values are ask (ask whether to save), always (save
automatically) and never (do not save).

Keywords Use Only File

Default value: nil.

If a keyword file is provided, should keywords be taken only from the file, or also from the keyword list.

Keywords Field Keep Sorted

Default value: nil.

When set, the keywords field is automatically sorted alphabetically when you add keywords to it. In
addition, duplicates are automatically removed.

Keywords Separator

Default value: "; "

String to insert between keywords in the keyword field.

29

Additional Fields

Default value: crossref url annote abstract keywords file timestamp.

e additional fields are those fields that are available for all entry types, and which BibTeX generally
ignores. is option allows you to specify which additional fields you wish to use in your database.
Specify one field per line, press the INS buon to add more fields.

Layout

Default value: full.

When set to full, Ebib takes over the entire frame when it runs. Alternatively, you can select custom,
so that you can specify the width of the Ebib windows yourself. In this case, Ebib takes up the right part
of the frame, leaving the le part free. See Screen Layout for details.

Width

Default value: 80.

e width of the Ebib windows when ebib-layout is set to custom.

Index Window Size

Default value: 10.

is option lets you specify the size of the index window at the top of the Ebib screen.

Index Display Fields

Default value: nil.

is option allows you to specify fields that should be displayed next to the entry key in the index buffer.
By default, the index buffer only shows the key of each entry, but if this is too lile information, you
can use this option to display e.g. the title of each entry as well.

30

Uniquify Keys

Default value: nil.

When you add a new entry to the database or when Ebib autogenerates a key (when Autogenerate Keys
is set), a check is made to make sure that the new key doesn’t already exist in the database. If it does,
Ebib normally aborts the operation but when this option is set, Ebib instead tries to create a unique key
by appending b or c, etc. to it.

Autogenerate Keys

Default value: nil.

is option specifies whether Ebib should autogenerate keys or not. If set, adding a new entry will not
ask for a key. Instead, a temporary key <new-entry> is used. When you leave the entry buffer, this
key is replaced with an autogenerated key.

Ebib uses the function bibtex-generate-autokey to generate the key. is function has a number of
customisation options, which are described in its documentation string.

Citation Commands

Default value:

((any
(("cite" "\\cite%<[%A]%>{%K}")))
(org-mode
(("ebib" "[ebib:%K][%A]")))
(markdown-mode
(("text" "@%K%< [%A]%>")
("paren" "[%(%<%A %>@%K%<, %A%>%;)]")
("year" "[-@%K%< %A%>]"))))

With the command ebib-insert-bibtex-key or with the command key p in the index buffer, you
can insert a BibTeX key into a LaTeX buffer. is option allows you to define the commands that are
available through tab completion when these functions ask for a citation command.

Citation commands are defined for specific major modes or for all modes (under the heading any). Each
command consists of an identifier, which you type when Ebib prompts you for a citation command, plus
a format string. is format string can contain a few directives, which are used to add the citation key
and any optional arguments. is format string can contain the following directives:

%K the entry key to be inserted.

%A an argument, for which the user is prompted.

31

%<...%> optional material surrounding a %A directive.

%(...%<sep>) a so-called repeater, which contains material that can be repeated. If present, the re-
peater must contain the entry key directive %K.

In the simplest case, the format string contains just a %K directive: \cite{%K}. In this case, %K is
replaced with the citation key and the result inserted. Usually, however, citation commands allow for
optional arguments that are formaed as pre- or postnotes to the citation. For example, using the
natbib package, you have citation commands available of the form:

\citet[cf.][p. 50]{Jones1992}

In order to be able to insert such citations, the format string must contain %A directives:

\citet[%A][%A]{%K}

With such a format string, Ebib asks the user to provide text for the two arguments and inserts it at
the locations specified by the directives. Of course, it is possible to leave the arguments empty (by just
hiing RET). With the format string above, this would yield the following citation in the LaTeX buffer:

\citet[][]{Jones1992}

is is completely harmless, because LaTeX will simply ignore the empty arguments. However, you
may prefer for the brackets not to appear if the arguments are empty. In that case, you can wrap the
brackets and the %A directives in a %<...%> pair:

\citet%<[%A]%>%<[%A]%>{%K}

Now, if you leave the arguments empty, Ebib produces the following citation:

\citet{Jones1992}

Note however, that in this case there is in fact one problem associated with this format string. If you fill
out the first argument but not the second, Ebib produces the wrong format string:

\citet[cf.]{Jones1992}

If only one optional argument is provided, natbib assumes that it is a postnote, while what you intended
is actually a prenote. erefore, it is best not to make the second argument optional:

\citet%<[%A]%>[%A]{%K}

is way, the second pair of brackets is always inserted, regardless of whether you provide a second
argument or not.

Natbib commands also accept multiple citation keys. When you call ebib-insert-bibtex-key from
within a LaTeX buffer, you can only provide one key, but when you’re in Ebib, you can mark multiple
entry keys and then use ; p to push them to a buffer. In this case, Ebib asks you for a separator and
then inserts all keys into the position of %K:

32

\citet{Jones1992,Haddock2004}

It is, however, also possible to specify in the format string that a certain sequence can be repeated and
how the different elements should be separated. is is done by wrapping that portion of the format
string that can be repeated in a %(...%) pair. Normally, you’ll want to provide a separator, which is
done by placing it between the % and the closing):

\citet[%A][%A]{%(%K%,)}

is format string says that the directive %K can be repeated and that multiple keys must be separated
with a comma. e advantage of this is that you are no longer asked to provide a separator. However,
this is not the only thing one can do, because it is also possible to put %A directives in the repeating part.
is is useful for the biblatex package. Biblatex has so-called multicite commands, which take the
following form:

\footcites[cf.][p. 50]{Jones1992}[][p. 201]{Haddock2004}

Multicite commands can take more than one citation key in braces {} and each of those citation keys
can take two optional arguments in brackets []. In order to get such citations, you can provide the
following format string:

\footcites%(%<[%A]%>[%A]{%K}%)

Here, the entire sequence of two optional arguments and the obligatory citation key is wrapped in
%(...%), so that Ebib knows it can be repeated. If you now mark multiple entries in Ebib, press ;
p and select the footcites command, Ebib will put all the keys in the citation, asking you for two
arguments for each citation key.

Of course it is also possible to combine parts that are repeated with parts that are not repeated. In fact,
that already happens in the previous example, because the part \footcites is not repeated. But the
part that is not repeated may contain %A directives as well:

\footcites%<(%A)%>(%A)%(%<[%A]%>[%A]{%K}%)

Multicite commands in biblatex take two additional arguments surrounded with parentheses. ese
are pre- and postnotes for the entire sequence of citations. ey can be accommodated as shown.

e function ebib-insert-bibtex-key can of course also be called from non-LaTeX buffers. For
example, org-mode can use bibliographic links, and so can Pandoc markdown. For those two modes,
citation commands have been predefined, which may provide some additional inspiration in case you
want to create your own format strings.

Multiline Major Mode

Default value: text-mode.

is specifies the major mode used in the multiline edit buffer. Note that the value must be a command
for a major mode.

33

http://orgmode.org
http://johnmacfarlane.net/pandoc/

Sort Order

Default value: nil.

e use of this option is explained above, see Sorting the .bib file. To create a sort order, click the INS
buon to create a sort level, and then click the INS buon under that sort level to enter a sort field. If
you want to add more than one sort field to the sort level, simply hit INS again.

Save Xrefs First

Default value: nil.

For cross-referencing to work, the cross-referencing entries must appear in the .bib file before the
cross-referenced entries. In order to tell Ebib to save all entries with a crossref field first, you must
set the option Save Xrefs First in Ebib’s customisation buffer. With this option set, BibTeX’s cross-
referencing options work as intended.

Crossref Face

Default value: ((t (:foreground "red"))).

Field values inherited from a cross-referenced entry are marked with this face. By default, the face has
red as foreground colour.

Selected Face

Default value:
((t (:inverse-video t)))

When entries are selected (with m), they are highlighted in this face. By default, it uses the text property
highlight.

Use Timestamp

Default value: nil.

If this option is set, Ebib will add a timestamp field to every new entry, recording the date and time it
was added to the database. See Timestamps.

34

Timestamp Format

Default value: "%a %b %e %T %Y".

is option specifies the format string that is used to create the timestamp. e format string is used
by format-time-string to create a time representation. e default value produces a timestamp
of the form "Mon Mar 12 01:03:26 2007". See the documentation for the Emacs function
format-time-string for the forms that the format string can take.

Standard Url Field

Default value: url.

is is the field that Ebib searches for URLs if you press u in the index buffer.

Url Regexp

Default value: \\url{\(.*\)}\|https?://[ˆ '<>\"\n\t\f]+.

is is the regular expression that Ebib uses to search for URLs in a field. With the default value, Ebib
considers everything that is in a LaTeX \url{...} command as a URL, and furthermore every string
of text that starts with http:// or https:// and does not contain whitespace or one of the characters
' " < or >.

Browser Command

Default value: nil.

If this option is unset, Ebib uses the Emacs function browse-url to start a browser. If this function
does not exist, you can set this option. For example, if you use the Firefox browser, set this option to
firefox.

For this to work, the browser that you use must be able to handle a URL on the command line.

Standard Doi Field

Default value: doi.

e field Ebib uses to extract the DOI if you press i in the index buffer.

35

Doi Url

Default value: http://dx.doi.org/%s

e URL used to open a DOI. It must contain exactly one instance fo %s, which will be replaced with
the DOI.

Standard File Field

Default value: file.

is is the field that Ebib searches for filenames if you press f in the index buffer.

File Associations

Default value: (("pdf" . "xpdf") ("ps" . "gv")).

e programs used to view files. By default, programs for .pdf and .ps files are specified, which should
be available on most linux systems. If you prefer other programs or are running on Windows, you can
specify them here. Note that Ebib searches the PATH for the programs, but you can also specify full
path names. Of course, it is also possible to add new associations.

Note that GNU/Emacs 23 comes with doc-view-mode, which provides a way to view .pdf and .ps
files inside Emacs. (e files are converted to .png format first.) If you prefer to use this mode, simply
leave the program field blank for the relevant file type.

File Regexp

Default value: [ˆ?|\:*<>\" \n\t\f]+.

Regural expression used to find files in a field. e default value essentially means that every string of
characters not containing any of the characters ? | \ : * < > " or space, newline, tab of formfeed
is recognised as a file name.

Note that URLs can easily by recognised by the prefix http:, but recognising files is not so straightfor-
ward. It is therefore not advisable to put anything but filenames in the file field.

File Sear Dirs

Default value: ~.

List of directories that Ebib searches for files. Note that searching is not recursive: only the files listed
here are searched, not their subdirectories.

36

Print Preamble

Default value: nil.

is option specifies the preamble that is to be added to the LaTeX file Ebib creates for printing the
database as index cards. You can set your own \usepackage commands, or anything else you may
need.

Print Newline

Default value: nil.

With this option set, Ebib puts every entry on a separate page when printing index cards. When this
option is unset, the entries are separated by a small amount of whitespace only.

Print Multiline

Default value: nil.

When this options is set, Ebib includes multiline field values when you print index cards. When unset,
multiline values are excluded, which saves space.

Latex Preamble

Default value: \bibliographystyle{plain}.

is option specifies the preamble to be added to the LaTeX file for creating a list of references from the
database. e default is to use the plain style, but you may want to specify your own BibTeX packages
and options.

Print Tempfile

Default value: nil.

is option specifies the name and location of the temporary file Ebib creates with the commands
ebib-print-database and ebib-latex-database. When unset, Ebib will ask for a filename each
time either of these commands is called.

37

Allow Identical Fields

Default value: nil.

If this option is set, Ebib stores the values of multiple occurrences of a single field within an entry in a
single occurrence of that field, separated by semicolons (see Multiple Identical Fields).

Entry Types

Default value: see below.

is option allows you to customise the entry types that Ebib uses. Each entry type has a name, a set of
obligatory fields and a set of optional fields. You can add, alter or delete single fields in an entry type,
or whole entry types.

If you want to add an entry type, hit the INS key on the top level and give the new entry a name, then
add obligatory and/or optional fields. It is not necessary that an entry type has both obligatory and
optional fields, you can define an entry that has only obligatory or only optional fields.

e default entry types and fields are the following:

article ;; name of entry type
author title journal year ;; obligatory fields
volume number pages month note ;; optional fields

book
author title publisher year
editor volume number series address edition month note

booklet
title
author howpublished address month year note

inbook
author title chapter pages publisher year
editor volume series address edition month note

incollection
author title booktitle publisher year
editor volume number series type chapter pages address edition month note

inproceedings
author title booktitle year
editor pages organization publisher address month note

manual
title

38

author organization address edition month year note

misc
--
title author howpublished month year note

mastersthesis
author title school year
address month note

phdthesis
author title school year
address month note

proceedings
title year
editor publisher organization address month note

techreport
author title institution year
type number address month note

unpublished
author title note
month year

Modifying Key Bindings

If you are unhappy about Ebib’s standard key bindings and would like to change them, or if you would
like to bind a command that is only available through the menu to a key, you can do so by creating a
file ~/.ebibrc and writing your preferred key bindings in it. A key binding definition is built up as
follows:

(ebib-key <buffer> <key> <command>)

<buffer> is either index, entry or strings, for the corresponding buffer. <key> is a standard Emacs
key description, and <command> is the Ebib command to be associated with the key. e commands
that can be used here are listed in e Ebib Buffers. Note that it is possible to bind more than one key
to a single function: just add as many ebib-key statements as necessary.

As an example, the following binds C-s to ebib-search in the index buffer, so that the database can
be searched with C-s as well as with /:

(ebib-key index "\C-s" ebib-search)

If you want to unbind a key, you can simply leave out <command>. So if you want to bind the command
ebib-delete-entry to D rather than d, you need to put the following in .ebibrc:

39

(ebib-key index "D" ebib-delete-entry)
(ebib-key index "d")

e first line binds D to the command ebib-delete-entry. e second line unbinds d.

If a command can be called with a prefix key (as for example ebib-delete-entry can), ebib-keywill
automatically rebind the prefixed version as well. So in the example above, the first line not only binds
D, it also binds ; D. Similarly, the second line not only unbinds d, but also ; d.

Note that if you bind the print commands to a key (ebib-print-entries and ebib-latex-entries)
they are automatically set up to accept the prefix key as well.

It is also possible to redefine the prefix key itself. To do this, you must specify select-prefix for
<buffer>. e value of <command> is irrelevant here, so it can be le out:

(ebib-key select-prefix ":")

is sets up : as the new prefix key. Doing this automatically unbinds the existing prefix key.

As a final option, ebib-key allows you to redefine the second key in the key bindings of the multiline
edit buffer:

(ebib-key multiline "&")

is piece of code changes the commands C-c | q, C-c | c and C-c | s to C-c & q, C-c & c and
C-c & s, respectively.

40

	Installation
	Package manager
	Manual installation
	Installing the info file
	Starting Ebib

	Basic Usage
	Getting Started
	Opening a .bib File
	Navigating a .bib File
	Starting a New .bib File

	Editing the Database
	Adding and Deleting Entries
	Editing Fields Values
	Editing Multiline Values
	Copy, Cut, Paste (Yank), and Delete

	Saving a Database
	Searching
	LaTeX Integration
	Orgmode and markdown
	Consulting Databases from within a LaTeX File
	Cross-referencing
	Selecting Entries
	Printing the Database
	Calling a Browser
	Viewing Files

	Advanced Features
	Screen Layout
	Preloading .bib Files
	@Preamble Definition
	@String Definitions
	Managing keywords
	Sorting the .bib File
	Merging and Importing
	Exporting Entries
	Timestamps
	Multiple Identical Fields
	Virtual Databases
	Simple Selection
	Complex Filters
	Properties of Virtual Databases

	The Multiline Edit Buffer
	The Options Menu

	The Ebib Buffers
	The Index Buffer
	The Entry Buffer
	The Strings Buffer

	Customisation
	The Customisation Buffer
	Default Type
	Preload Bib Files
	Preload Bib Search Dirs
	Create Backups
	Keywords list
	Keywords File
	Keywords File Save On Exit
	Keywords Use Only File
	Keywords Field Keep Sorted
	Keywords Separator
	Additional Fields
	Layout
	Width
	Index Window Size
	Index Display Fields
	Uniquify Keys
	Autogenerate Keys
	Citation Commands
	Multiline Major Mode
	Sort Order
	Save Xrefs First
	Crossref Face
	Selected Face
	Use Timestamp
	Timestamp Format
	Standard Url Field
	Url Regexp
	Browser Command
	Standard Doi Field
	Doi Url
	Standard File Field
	File Associations
	File Regexp
	File Search Dirs
	Print Preamble
	Print Newline
	Print Multiline
	Latex Preamble
	Print Tempfile
	Allow Identical Fields
	Entry Types

	Modifying Key Bindings

