
csvtools.sty v1.0

N.L.C. Talbot

21st December 2003

Contents

1 Introduction 1

2 Mail Merging and Similar Applications 1

3 Converting CSV file into a tabular environment 3

4 Associated Counters 5

5 Cross-Referencing 7

6 Saving Entries 10

7 Bugs/Drawbacks/“Features” 12

8 Contact Details 12

List of Examples

1 Mail Merging 2

2 Multiple Figures 2

3 Mail Merging using \field 3

4 Aligning Data from a CSV file 3

5 Adding Lines 4

6 Added Complexity 5

7 Stripy Table 6

8 More Mail Merging 6

9 Labelling within \applyCSVfile 7

10 Labelling within \applyCSVfile 7

11 Labelling within CSVtotabular 7

1

12 Labelling within CSVtotabular 9

13 Saving Entries 10

1 Introduction

The csvtools package allows you to repeatedly perform a set of LATEX commands
on data in each row of a comma separated variable (CSV) file. This can be used
for mail merging, generating tables etc.

2 Mail Merging and Similar Applications

Letters can be generated using data given in each line from 〈filename〉. If the
CSV file contains a header row, the unstarred version of \applyCSVfile should
be used, otherwise the starred version \applyCSVfile* should be used. The
optional argument 〈n〉 specifies on which line the actual data (not header line)
starts. The unstarred version defaults to line 2 (the header row is always assumed
to be on line 1) and the starred version defaults to 1.

\applyCSVfile[〈n〉]{〈filename〉}{〈text〉}\applyCSVfile

With the unstarred version, the entries in the header row are used to generate
commands of the form \insert〈identifier〉1 to access corresponding elements in\insert...

the row currently being processed. For example, suppose the first line of the CSV
file looks like:

Name,Address,Time,Date

then the commands \insertName, \insertAddress, \insertTime and \insertDate
are created, allowing you to use the entries in the first, second, third and fourth
columns of the current row. If the header text contains non-alphabetical char-
acters, e.g. Full Name, then you will need to use \insertbyname{〈text〉}, e.g.\insertbyname

\insertbyname{Full Name}.

Example 1 (Mail Merging)

Suppose there is a file called details.csv that has the following contents:

Name,Address,Time,Date

Miss A. Person,1 The Road\\The Town\\AB1 2XY,15.00,4th May 2004

Mr A. N. Other,2 The Road\\The Town\\AB1 2XY,15.30,11th May 2004

then the following code can be used to generate a letter for each person in the
CSV file:

\applyCSVfile{details.csv}{%

\begin{letter}{\insertName\\\insertAddress}

\opening{Dear \insertName}

You are invited to an interview at \insertTime\ on the \insertDate.

1See Note 1 in Section 7

2

\closing{Yours Sincerely}

\end{letter}}

Note that you could also use \insertbyname{Name} etc instead of \insertName
etc. Also note that you need to specify the file extension when specifying the
filename.

Example 2 (Multiple Figures)

Suppose details.csv looks like:

File,Caption

circle.ps,A Circle

rectangle.ps,A Rectangle

triangle.ps,A Triangle

Assuming that the files circle.ps, rectangle.ps and triangle.ps exist, then
the following code will generate a figure for each graphics file2:

\applyCSVfile{sample3.csv}{

\begin{figure}

\centerline{\includegraphics{\insertFile}}

\caption{\insertCaption}

\end{figure}}

Note that in this example, you can’t use \insertbyname{File}. (See Note 3 in
Section 7.)

\applyCSVfile*[〈n〉]{〈filename〉}{〈letter〉}\applyCSVfile*

In this case the CSV file has no header row, so there are no \insert〈identifier〉 or
\insertbyname{〈label〉} commands available, instead, the command \field{〈col〉}\field

should be used, where 〈col〉 is the column number.

Example 3 (Mail Merging using \field)
Suppose there is a file called details.csv that has the following contents:

Miss A. Person,1 The Road\\The Town\\AB1 2XY,15.00,4th May 2004

Mr A. N. Other,2 The Road\\The Town\\AB1 2XY,15.30,11th May 2004

then the following code can be used to generate a letter for each person in the
CSV file:

\applyCSVfile*{details.csv}{%

\begin{letter}{\field{1}\\\field{2}}

\opening{Dear \field{1}}

You are invited to an interview at \field{3}\ on the \field{4}.

\closing{Yours Sincerely}

\end{letter}}

2The graphicx package will be needed.

3

Table 1: Example 4

Name Assignment 1 Assignment 2 Total
A. Smith 80 70 150
B. Jones 60 80 140
J. Doe 85 75 160

75 75 150

3 Converting CSV file into a tabular environment

\CSVtotabular{〈filename〉}{〈col-align〉}{〈first〉}{〈middle〉}{〈last〉}\CSVtotabular

〈filename〉 is the name of the CSV file which must have a header row on line 1,
〈col-align〉 is the column alignment argument that gets passed to the tabular
environment, 〈first〉 is the code for the first line, 〈middle〉 is the code for the
middle lines and 〈last〉 is the code for the last line. This is best demonstrated
with an example.

Example 4 (Aligning Data from a CSV file)

Suppose the file sample.csv looks like:

Name,Assignment 1,Assignment 2,Total

A. Smith,80,70,150

B. Jones,60,80,140

J. Doe,85,75,160

,75,75,150

then the following code can be used to align the data:

\CSVtotabular{sample.csv}{lccc}{%

\bfseries Name &

\bfseries Assignment 1&

\bfseries Assignment 2&

\bfseries Total\\}{%

\insertName &

\insertbyname{Assignment 1} &

\insertbyname{Assignment 2} &

\insertTotal\\}{%

&

\insertbyname{Assignment 1} &

\insertbyname{Assignment 2} &

\insertTotal}

This result of this code is shown in Table 13.

\ifnextrowlast{〈last-code〉}{〈not-last-code〉}\ifnextrowlast

The command \ifnextrowlast can be used to vary what happens on the last but
one row. The following example illustrates this by placing \hline\hline after
the penultimate row.

3Note that \CSVtotabular only puts the data in a tabular environment not in a table

4

Table 2: Example 5

Name Assignment 1 Assignment 2 Total
A. Smith 80 70 150
B. Jones 60 80 140
J. Doe 85 75 160

75 75 150

Example 5 (Adding Lines)

\CSVtotabular{sample.csv}{|l|ccc|}{%

\hline\bfseries Name &

\bfseries Assignment 1&

\bfseries Assignment 2&

\bfseries Total\\\hline\hline}{%

\insertName &

\insertbyname{Assignment 1} &

\insertbyname{Assignment 2} &

\insertTotal

\ifnextrowlast{\\\hline\hline}{\\}}{%

&

\insertbyname{Assignment 1} &

\insertbyname{Assignment 2} &

\insertTotal\\\hline}

This result of this code is shown in Table 2.

Example 6 (Added Complexity)

In this example, \multicolumn is used to override the column specifier for the
first column in the last row.

\CSVtotabular{sample2.csv}{|l|ccc|}{%

\hline\bfseries Name &

\bfseries Assignment 1 &

\bfseries Assignment 2 &

\bfseries Total\\\hline\hline

}{%

\insertName &

\insertbyname{Assignment 1} &

\insertbyname{Assignment 2} &

\insertTotal

\ifnextrowlast{\\\hline\multicolumn{1}{l|}{}}{\\}

}{%

&

\insertbyname{Assignment 1} &

\insertbyname{Assignment 2} &

\insertTotal\\\cline{2-4}

}

5

Table 3: Example 6

Name Assignment 1 Assignment 2 Total
A. Smith 80 70 150
B. Jones 60 80 140
J. Doe 85 75 160

75 75 150

Notice that instead of placing \multicolumn{1}{l|}{} at the start of the final
argument, it is instead placed in the first argument to \ifnextrowlast4. The
result of this code is shown in Table 3.

4 Associated Counters

Within the \CSVtotabular and \applyCSVfile commands, there are two coun-
ters, csvlinenum and csvrownumber. The former, csvlinenum, is the current linecsvlinenum

csvrownumber number in the CSV file, whereas the latter, csvrownumber, is the current data row.
Blank lines are ignored by csvrownumber, so if there are no blank lines within the
CSV file, the counters will have the same value, however, if there are blank lines,
the value of csvrownumber may be less than csvlinenum. For example, if the
CSV file looks like:

Name,Assignment 1,Assignment 2,Total

A. Smith,80,70,150

B. Jones,60,80,140

J. Doe,85,75,160

,75,75,150

then the csvlinenum and csvrownumber will be the same throughout, whereas if
the file looks like:

Name,Assignment 1,Assignment 2,Total

A. Smith,80,70,150

B. Jones,60,80,140

J. Doe,85,75,160

,75,75,150

then the values of csvlinenum and csvrownumber will diverge after line 1 is pro-
cessed. Of the two counters, csvrownumber is likely to be the most useful.

Example 7 (Stripy Table)

The package colortbl defines the command \rowcolor which enables you to
specify the row colour. Suppose you want a stripy table5, this can be achieved as
follows:

4See Note 4 in Section 7
5This is designed as an example of how to use the package, not incouragement to produce

garish tables!

6

\CSVtotabular{sample2.csv}{lccc}{%

\rowcolor{green}\bfseries Name &

\bfseries Assignment 1 &

\bfseries Assignment 2 &

\bfseries Total\\\rowcolor{blue}

}{%

\insertName &

\insertbyname{Assignment 1} &

\insertbyname{Assignment 2} &

\insertTotal

\ifthenelse{\isodd{\value{csvrownumber}}}{%

\\\rowcolor{blue}}{\\\rowcolor{green}}

}{%

&

\insertbyname{Assignment 1} &

\insertbyname{Assignment 2} &

\insertTotal

}

Example 8 (More Mail Merging)

This is an example of mail merging where the letter reference is generated from
csvrownumber. The CSV file is as used in Example 1 on page 2.

\applyCSVfile{details.csv}{%

\begin{letter}{\insertName\\\insertAddress}

\opening{Dear \insertName}

\textbf{Ref : } interview.\thecsvrownumber

You are invited to an interview at \insertTime\ on the \insertDate.

\closing{Yours Sincerely}

\end{letter}}

5 Cross-Referencing

Labels can be generated using the standard \label command, but you will
need some way to make each label unique. Example 9 does this by using
\thecsvrownumber, whereas Example 10 uses \insert〈identifier〉.

Example 9 (Labelling within \applyCSVfile)
Example 2 on page 2 can be modified to label each figure:

\applyCSVfile{sample3.csv}{

\begin{figure}

\centerline{\includegraphics{\insertFile}}

\caption{\insertCaption}

\label{fig:pic\thecsvrownumber}

\end{figure}}

7

This example uses \label{fig:pic\thecsvrownumber}, so the first figure gen-
erated by this \applyCSVfile command will be fig:pic1, the second fig:pic2
etc.

Example 10 (Labelling within \applyCSVfile)
Modifying the previous example, we now have:

\applyCSVfile{sample3.csv}{

\begin{figure}

\centerline{\includegraphics{\insertFile}}

\caption{\insertCaption}

\label{fig:\insertFile}

\end{figure}}

The labels for each figure are now: fig:circle.ps, fig:rectangle.ps and
fig:triangle.ps, respectively.

Example 11 (Labelling within CSVtotabular)

This example is slightly more complicated. The CSV file, data.csv looks like:

Incubation Temperature,Incubation Time,Time to Growth

40,120,40

40,90,60

35,180,20

The following code generates a table using the data with an additional column
that generates the experiment number. Since csvrownumber includes the header
row, a new counter called experiment is created to keep track of each experiment
(where each experiment corresponds to a row in the data file).

\newcounter{experiment}

\begin{table}

\caption{Time to Growth Experiments}

\label{tab:exp}

\vspace{10pt}

\centering

\CSVtotabular{data.csv}{cccc}{%

% Header Row

\bfseries Experiment &

\bfseries \begin{tabular}{c}Incubation\\Temperature\end{tabular} &

\bfseries \begin{tabular}{c}Incubation\\Time\end{tabular} &

\bfseries \begin{tabular}{c}Time\\to\\Growth\end{tabular}\\}{%

% Middle Rows

\refstepcounter{experiment}%

\label{exp:\insertbyname{Incubation Temperature}:\insertbyname{Incubation Time}}

\theexperiment &

\insertbyname{Incubation Temperature} &

\insertbyname{Incubation Time} &

\insertbyname{Time to Growth} \\}{%

8

Table 4: Time to Growth Experiments

Experiment
Incubation

Temperature
Incubation

Time

Time
to

Growth
1 40 120 40
2 40 90 60
3 35 180 20

% Final Row

\refstepcounter{experiment}%

\label{exp:\insertbyname{Incubation Temperature}:\insertbyname{Incubation Time}}

\theexperiment &

\insertbyname{Incubation Temperature} &

\insertbyname{Incubation Time} &

\insertbyname{Time to Growth}}

\par

\end{table}

It can be seen from Table~\ref{tab:exp}, that

Experiment~\ref{exp:35:180} had the shortest time to growth.

In this example, each experiment has the corresponding label exp:〈Incubation
Temperature〉:〈Incubation Time〉 so the first experiment has label exp:40:120,
the second experiment has the label exp:40:90 and the third experiment has the
label exp:35:180.

Table 4 shows the resulting table for this example.

The following example is more refined in that it takes advantage of the fact
that the time to growth data consists of integers only, so the experiment with the
maximum growth can be determined by LATEX.

Example 12 (Labelling within CSVtotabular)

\newcounter{experiment}

\newcounter{maxgrowth}

\newcounter{incT} % incubation temperature

\newcounter{inct} % incubation time

\begin{table}

\caption{Time to Growth Experiments}

\label{tab:exp}

\vspace{10pt}

\centering

\CSVtotabular{data.csv}{cccc}{%

% Header row

\bfseries Experiment &

\bfseries \begin{tabular}{c}Incubation\\Temperature\end{tabular} &

\bfseries \begin{tabular}{c}Incubation\\Time\end{tabular} &

\bfseries \begin{tabular}{c}Time\\to\\Growth\end{tabular}\\}{%

% Middle rows

9

\refstepcounter{experiment}%

\label{exp:\insertbyname{Incubation Temperature}:\insertbyname{Incubation Time}}

\theexperiment &

\insertbyname{Incubation Temperature} &

\insertbyname{Incubation Time} &

\insertbyname{Time to Growth}%

\ifthenelse{\value{maxgrowth}<\insertbyname{Time to Growth}}{%

\setcounter{maxgrowth}{\insertbyname{Time to Growth}}%

\setcounter{incT}{\insertbyname{Incubation Temperature}}%

\setcounter{inct}{\insertbyname{Incubation Time}}}{}%

\\}{%

% Last row

\refstepcounter{experiment}%

\label{exp:\insertbyname{Incubation Temperature}:\insertbyname{Incubation Time}}

\theexperiment &

\insertbyname{Incubation Temperature} &

\insertbyname{Incubation Time} &

\insertbyname{Time to Growth}%

\ifthenelse{\value{maxgrowth}<\insertbyname{Time to Growth}}{%

\setcounter{maxgrowth}{\insertbyname{Time to Growth}}%

\setcounter{incT}{\insertbyname{Incubation Temperature}}%

\setcounter{inct}{\insertbyname{Incubation Time}}}{}%

}

\par

\end{table}

As can be seen from Table~\ref{tab:exp},

Experiment~\ref{exp:\theincT:\theinct}

had the maximum time to growth, with

incubation time \theinct,

incubation temperature \theincT\ and

time to growth, \themaxgrowth.

6 Saving Entries

Entries can be saved using the command:

\csvSaveEntry[〈counter〉]{〈identifier〉}\csvSaveEntry

where 〈counter〉 is a LATEX counter, by default csvrownumber, and 〈identifier〉 is
the header entry. The entry can then be used with the command:

\csvGetEntry{〈counter〉}{〈identifier〉}\csvGetEntry

The following example illustrates the use of these commands.

Example 13 (Saving Entries)

This example illustrates how you can use one CSV file to access data in other CSV
files. This example has several CSV files:

10

File index.csv:

File,Temperature,NaCl,pH

exp25a.csv,25,4.7,0.5

exp25b.csv,25,4.8,1.5

exp30a.csv,30,5.12,4.5

File exp25a.csv:

Time,Logcount

0,3.75

23,3.9

45,4.0

File exp25b.csv:

Time,Logcount

0,3.6

60,3.8

120,4.0

File exp30a.csv:

Time,Logcount

0,3.73

23,3.67

60,4.9

It is not possible to nest \CSVtotabular and \applyCSVfile, so if you need to
go through index.csv and use each file named in there, you can first go through
index.csv storing the information using \csvSaveEntry as follows:

\newcounter{maxexperiments}

\applyCSVfile{sample5.csv}{%

\stepcounter{maxexperiments}

\csvSaveEntry{File}

\csvSaveEntry{Temperature}

\csvSaveEntry{NaCl}

\csvSaveEntry{pH}

}

The counter maxexperiments simply counts the number of entries in index.csv.
The entries can now be used to generate a table for each file listed in index.csv
(the \whiledo command is defined in the ifthen package):

\newcounter{experiment}

\whiledo{\value{experiment}<\value{maxexperiments}}{%

\stepcounter{experiment}

\begin{table}

\caption{Temperature = \protect\csvGetEntry{experiment}{Temperature},

NaCl = \protect\csvGetEntry{experiment}{NaCl},

pH = \protect\csvGetEntry{experiment}{pH}}

\vspace{10pt}

\centering

\CSVtotabular{\csvGetEntry{experiment}{File}}{ll}{%

Time & Log Count\\}{%

11

\insertTime & \insertLogcount\\}{%

\insertTime & \insertLogcount}

\end{table}

}

Note that \csvGetEntry needs to be \protected within the \caption command.
This example can be modified if, say, you only want the tables where the

temperature is 25:

\setcounter{experiment}{0}

\whiledo{\value{experiment}<\value{maxexperiments}}{%

\stepcounter{experiment}

\ifthenelse{\equal{\csvGetEntry{experiment}{Temperature}}{25}}{%

\begin{table}

\caption{Temperature = \protect\csvGetEntry{experiment}{Temperature},

NaCl = \protect\csvGetEntry{experiment}{NaCl},

pH = \protect\csvGetEntry{experiment}{pH}}

\vspace{10pt}

\centering

\CSVtotabular{\csvGetEntry{experiment}{File}}{ll}{%

Time & Log Count\\}{%

\insertTime & \insertLogcount\\}{%

\insertTime & \insertLogcount}

\end{table}}{}

}

7 Bugs/Drawbacks/“Features”

1. The package doesn’t check to see whether \insert〈identifier〉 exists, other-
wise you would not be able to use multiple CSV files with the same headers,
as in Example 13. Therefore it is recommended that you check to make sure
that the command does not already exist. For example, the TEX commands
\insert and \insertpenalties already exist, so a blank header or a header
named penalties would cause problems.

2. Note also that \insertbyname doesn’t check if you’ve given a valid label,
so if no text appears, check you’ve spelt it correctly, checking punctuation,
spaces and case.

3. Note that in Example 2, replacing line 3 with:

\centerline{\includegraphics{\insertbyname{File}}}

will cause an error, as \insertbyname{File} doesn’t get fully expanded by
the time it gets passed to \includegraphics, and will prevent \includegraphics
from finding the file. It is possible to get around this using TEX’s \edef com-
mand:

\edef\psfilename{\insertbyname{File}}

\centerline{\includegraphics{\psfilename}}

12

4. You can’t have commands like \hline, \cline and \multicolumn in the
first column of the 〈middle〉 or 〈last〉 code of \CSVtotabular. If you do, it
will generate a misplaced \noalign error, instead you need to put it at the
end of the 〈first〉 or 〈middle〉 code. (See Example 6.)

5. You can’t have nested \applyCSVfile and \CSVtotabular commands. (See
Example 13)

6. If the CSV file has a header row, it must be on the first line.

7. It is possible for TEX to run out of memory if you use \csvSaveEntry on a
large file.

8 Contact Details

Dr Nicola Talbot
School of Computing Sciences
University of East Anglia
Norwich. NR4 7TJ. England.

http://theoval.cmp.uea.ac.uk/~gcc/family/nicky/

13

