
Package ‘howler’
June 4, 2024

Type Package

Title 'Shiny' Extension of 'howler.js'

Version 0.3.0

Description Audio interactivity within 'shiny' applications using 'howler.js'. Enables the
status of the audio player to be sent from the UI to the server, and events such as
playing and pausing the audio can be triggered from the server.

License MIT + file LICENSE

URL https://github.com/ashbaldry/howler,

https://github.com/goldfire/howler.js

BugReports https://github.com/ashbaldry/howler/issues

Encoding UTF-8

Imports shiny, htmlwidgets

Suggests rmarkdown, knitr, chromote, shinytest2, globals, testthat (>=
3.0.0)

Language en-GB

RoxygenNote 7.3.1

VignetteBuilder knitr

NeedsCompilation no

Author Ashley Baldry [aut, cre],
James Simpson [aut] (Creator of howler.js)

Maintainer Ashley Baldry <arbaldry91@gmail.com>

Repository CRAN

Date/Publication 2024-06-04 19:00:02 UTC

Contents
howler . 2
howler-shiny . 4
howlerButton . 5

1

https://github.com/ashbaldry/howler
https://github.com/goldfire/howler.js
https://github.com/ashbaldry/howler/issues

2 howler

howlerCurrentTrack . 7
howlerModule . 8
howlerSeekSlider . 9
howlerServer . 10
howlerVolumeSlider . 11
playSound . 12
runHowlerExample . 13

Index 15

howler Create a Howler Audio Player

Description

howler is used to initialise the ’howler.js’ framework by adding all of the specified tracks to the
player, and can be run by either including UI buttons or server-side actions.

Usage

howler(
tracks,
options = list(),
track_formats = NULL,
auto_continue = FALSE,
auto_loop = FALSE,
seek_ping_rate = 1000L,
elementId = NULL

)

Arguments

tracks A named vector of file paths to sounds. If multiple file extensions are included,
then use a named list instead, with each list item containing each extension of
the sound.

options A named list of options to add to the player. For a full list of options see https:
//github.com/goldfire/howler.js?tab=readme-ov-file#options

track_formats An optional list of formats of the sounds. By default ’howler’ will guess the
format to play in. Must be the same length as tracks

auto_continue If there are multiple files, would you like to auto play the next file after the
current one has finished? Defaults to TRUE

auto_loop Once all files have been played, would you like to restart playing the playlist?
Defaults to FALSE

seek_ping_rate Number of milliseconds between each update of ‘input${id}_seek‘ while play-
ing. Default is set to 1000. If set to 0, then ‘input${id}_seek‘ will not exist.

elementId HTML id tag to be given to the howler player element

https://github.com/goldfire/howler.js?tab=readme-ov-file#options
https://github.com/goldfire/howler.js?tab=readme-ov-file#options

howler 3

Details

All buttons associated with the howler should be given the same id argument. This is to ensure
that the buttons are linked to the player.

i.e. If howler(id = "howler"), then howlerPlayButton(id = "howler")

Value

A shiny.tag containing all of the required options for a Howl JavaScript object to be initialised in a
shiny application.

On the server side there will be up to four additional objects available as inputs:

{id}_playing A logical value as to whether or not the howler is playing audio

{id}_track Basename of the file currently loaded

{id}_seek (If seek_ping_rate > 0) the current time (in seconds) of the track loaded

{id}_duration The duration (in seconds) of the track loaded

See Also

howlerButton, howlerServer

Examples

library(shiny)

ui <- fluidPage(
title = "howler.js Player",
howler(elementId = "howler", c(sound = "audio/sound.mp3")),
howlerPlayPauseButton("howler")

)

server <- function(input, output) {
}

shinyApp(ui, server)

Multiple file formats
howler(

elementId = "howler",
list(

track_1 = c("audio/sound.webm", "audio/sound.mp3"),
track_2 = c("audio/sound2.webm", "audio/sound2.mp3"),

)
)

4 howler-shiny

howler-shiny Shiny bindings for howler

Description

Output and render functions for using howler within Shiny applications and interactive Rmd docu-
ments.

Usage

howlerOutput(outputId)

renderHowler(expr, env = parent.frame(), quoted = FALSE)

Arguments

outputId output variable to read from

expr An expression that generates a howler

env The environment in which to evaluate expr.

quoted Is expr a quoted expression (with quote())? This is useful if you want to save
an expression in a variable.

Value

An output or render function that enables the use of the widget within Shiny applications.

Examples

if (interactive()) {
library(shiny)

ui <- fluidPage(
title = "howler.js Player",
howlerOutput("howler"),
howlerPlayPauseButton("howler")

)

server <- function(input, output) {
output$howler <- renderHowler(howler(c(sound = "audio/sound.mp3")))

}

shinyApp(ui, server)
}

howlerButton 5

howlerButton Audio Buttons

Description

Buttons that can be used to interact with the howler.

howlerPlayButton, howlerPauseButton, howlerPlayPauseButton and howlerStopButton will
all be applied to the current track.

howlerBackButton and howlerForwardButton will change the track position by a specified amount
of time.

howlerPreviousButton and howlerNextButton will play the previous/following track supplied
to the player.

howlerVolumeDownButton and howlerVolumeUpButton will change the volume of the player by
a specified percentage.

howlerButton is a customisable version of any of the above individual button.

Usage

howlerButton(howler_id, button_type = HOWLER_BUTTON_TYPES, ...)

howlerPlayButton(howler_id)

howlerPauseButton(howler_id)

howlerPlayPauseButton(howler_id)

howlerStopButton(howler_id)

howlerBackButton(howler_id, seek_change = 10L)

howlerForwardButton(howler_id, seek_change = 10L)

howlerPreviousButton(howler_id)

howlerNextButton(howler_id)

howlerVolumeUpButton(howler_id, volume_change = 0.1)

howlerVolumeDownButton(howler_id, volume_change = 0.1)

howlerVolumeToggleButton(howler_id)

Arguments

howler_id ID given to the howler player.

6 howlerButton

button_type Type of button to create. Available buttons are in the details, default set to
play_pause.

... Attributes/Inner tags added to the button

seek_change Time (in seconds) to move forward/backward the track when clicked. Default is
10 seconds

volume_change How much to change the volume by. Default is 10%.

Details

The following button_type are available to create:

play_pause (default) Switch between playing and pausing the track

play Resumes the current track

pause Pauses the current track

stop Stops current track, when played will start from beginning

previous,next Switches to the previous/following track

volumedown,volumeup Decreases/Increases the volume by 10% (If using howlerButton include
the attribute `data-volume-change`)

back,forward Seek forward/backwards 10s (If using howlerButton include the attribute `data-seek-change`
with negative values to go backwards)

When using a play_pause button, the icon will toggle between the play and pause button depending
on whether or not the track is playing.

Value

An HTML tag containing the audio button.

An additional input will be available in the server side in the form {id}_{button_type}. For
example howlerBackButton("howler") will create an input element of input$howler_back. All
of these will work in the same way as actionButton

Examples

if (interactive()) {
library(shiny)

ui <- fluidPage(
tile = "howler.js Player",
howler(elementId = "howler", "audio/sound.mp3"),
howlerPreviousButton("howler"),
howlerBackButton("howler"),
howlerPlayPauseButton("howler"),
howlerForwardButton("howler"),
howlerNextButton("howler"),
howlerVolumeDownButton("howler"),
howlerVolumeUpButton("howler")

)

howlerCurrentTrack 7

server <- function(input, output) {
}

shinyApp(ui, server)
}

howlerCurrentTrack Current Track

Description

A way to display track information in the UI without having to communicate with the server.

Usage

howlerCurrentTrack(id, ...)

howlerSeekTime(id, ...)

howlerDurationTime(id, ...)

Arguments

id ID given to the current track label. For it to work with the howler, the ID must
match that of the howler.

... Other attributes to give to the HTML tag.

Value

A div tag that will be linked to the howler to show the current track.

Examples

if (interactive()) {
library(shiny)

ui <- fluidPage(
title = "howler.js Player",
howler(elementId = "sound", "audio/sound.mp3"),
howlerCurrentTrack("sound"),
p(

howlerSeekTime("sound"),
"/",
howlerDurationTime("sound")

),
howlerPlayPauseButton("sound")

)

8 howlerModule

server <- function(input, output, session) {
}

shinyApp(ui, server)
}

howlerModule Howler.js Module

Description

A simple module containing a howler player and a default set of howler buttons. The module also
contains the current position of the track being played and the duration of the track.

Usage

howlerModuleUI(id, files, ..., include_current_track = TRUE, width = "300px")

howlerBasicModuleUI(id, files, ..., width = "300px")

howlerModuleServer(id)

Arguments

id ID to give to the namespace of the module. The howler player will have the ID
{id}-howler.

files Files that will be used in the player. This can either be a single vector, or a list
where different formats of the same file are kept in each element of the list.

... Further arguments to send to howler

include_current_track

Logical, should the current track be included in the UI of the module?

width Width (in pixels) of the player. Defaults to 400px.

Value

The UI will provide a player with a play/pause button, previous and next buttons, duration informa-
tion and a volume slider.

The server-side module will return a list of reactive objects:

playing Logical value whether or not the player is currently playing

track Name of the track currently loaded

duration Duration (in seconds) of the track currently loaded

seek Current position (in seconds) of the track currently loaded

howlerSeekSlider 9

Examples

if (interactive()) {
ui <- fluidPage(
title = "howler.js Module",
howlerModuleUI("howl", c("audio/track1.mp3", "audio/track2.mp3"))

)

server <- function(input, output, session) {
howlerModuleServer("howl")

}

shinyApp(ui, server)
}

howlerSeekSlider Seek Slider

Description

A UI element that can be included with a howler to manually change the location of the track.

Usage

howlerSeekSlider(id)

Arguments

id ID given to the volume slider. For it to work with the howler, the ID must match
that of the howler.

Value

A slider element of class howler-seek-slider that will display the position of the current track
playing.

Examples

if (interactive()) {
library(shiny)

ui <- fluidPage(
title = "howler.js Player",
howler(elementId = "sound", "audio/sound.mp3"),
howlerPlayPauseButton("sound"),
howlerSeekSlider("sound")

)

server <- function(input, output, session) {

10 howlerServer

}

shinyApp(ui, server)
}

howlerServer Update howler.js Server-Side

Description

Change the state of the howler player from the server.

playHowl, pauseHowl, togglePlayHowl and stopHowl will all be applied to the current track.

changeTrack will update the track to the file specified.

addTrack will add a new track to the specified player.

Usage

changeTrack(id, track, session = getDefaultReactiveDomain())

addTrack(id, track, play_track = FALSE, session = getDefaultReactiveDomain())

deleteTrack(id, track, session = getDefaultReactiveDomain())

playHowl(id, session = getDefaultReactiveDomain())

pauseHowl(id, session = getDefaultReactiveDomain())

togglePlayHowl(id, session = getDefaultReactiveDomain())

stopHowl(id, session = getDefaultReactiveDomain())

seekHowl(id, seek, session = getDefaultReactiveDomain())

changeHowlSpeed(id, rate = 1, session = getDefaultReactiveDomain())

Arguments

id ID of the howler to update

track Either the track name of the file to change to, or the index of the file to play. If
the file is not included in the player nothing will happen.

session Shiny session

play_track Logical, should the new track be played on addition?

seek Time (in seconds) to set the position of the track

rate Rate (from 0.5 to 4.0) of the audio playback speed

howlerVolumeSlider 11

Details

For ‘deleteTrack‘, make sure that the name is used of the track rather than the file name.

Value

Updates the the state of the specified howler in the shiny application.

Examples

if (interactive()) {
library(shiny)

tracks <- c("audio/track1.mp3", "audio/track2.mp3")

ui <- fluidPage(
title = "howler.js Player",
selectInput("track", "Select Track", basename(tracks)),
howler(elementId = "howler", tracks),
howlerPlayPauseButton("howler")

)

server <- function(input, output) {
observeEvent(input$track, changeHowlerTrack("howler", input$track))

}

runShiny(ui, server)
}

howlerVolumeSlider Volume Slider

Description

A more user friendly way to adjust the volume of the howler than by using buttons. There are still
volume up/down buttons, but a slider can be moved up/down as required.

Usage

howlerVolumeSlider(id, volume = 1, button = TRUE)

Arguments

id ID given to the volume slider. For it to work with the howler, the ID must match
that of the howler.

volume Initial volume to set the player at. Defaults at 100%

button Logical, should a mute toggle button be included next to the slider? Default is
TRUE

12 playSound

Details

If using howlerVolumeSlider, avoid using the volume buttons, as this will cause duplicate IDs to
appear in the shiny application and prevents the slider from working properly.

Value

A volume slider with a howlerVolumeDownButton and a howlerVolumeUpButton either side.

Examples

if (interactive()) {
library(shiny)

ui <- fluidPage(
title = "howler.js Player",
howler(elementId = "sound", "audio/sound.mp3"),
howlerPlayPauseButton("sound"),
howlerVolumeSlider("sound")

)

server <- function(input, output, session) {
}

shinyApp(ui, server)
}

playSound Play Sound

Description

Using howler.js, play a sound within a shiny application.

Usage

playSound(track, options = NULL, session = getDefaultReactiveDomain())

Arguments

track Either a URL, file path or Base 64 character string of the sound to play

options A named list of options to add to the sound. For a full list of options see https:
//github.com/goldfire/howler.js?tab=readme-ov-file#options

session Shiny session

Details

The ‘src‘ and ‘autoplay‘ options are pre-determined by ‘playSound‘ and are not required in ‘op-
tions‘. If they are included, a warning will be printed and they will be ignored from the list.

https://github.com/goldfire/howler.js?tab=readme-ov-file#options
https://github.com/goldfire/howler.js?tab=readme-ov-file#options

runHowlerExample 13

Examples

library(shiny)

audio_files_dir <- system.file("examples/_audio", package = "howler")
addResourcePath("sample_audio", audio_files_dir)

ui <- fluidPage(
actionButton("play", "Play Sound")

)

server <- function(input, output) {
observeEvent(input$play, {
playSound("sample_audio/running_out.mp3")

})
}

shinyApp(ui, server)

runHowlerExample Run {howler} Example Applications

Description

Run {howler} Example Applications

Usage

runHowlerExample(example = "basic", display.mode = "showcase", ...)

availableHowlerExamples()

Arguments

example Name of the example to load. Current examples include:

basic Basic example of howler in use
full Basic example of using all buttons available in howler

module Example of using the howlerModule

server Example showing server-side functionality

display.mode The mode in which to display the application. By default set to "showcase" to
show code behind the example.

... Optional arguments to send to shiny::runApp

Value

This function does not return a value; interrupt R to stop the application (usually by pressing Ctrl+C
or Esc).

14 runHowlerExample

Examples

availableHowlerExamples()

if (interactive()) {
library(shiny)
library(howler)

runHowlerExample("basic")
}

Index

actionButton, 6
addTrack (howlerServer), 10
availableHowlerExamples

(runHowlerExample), 13

changeHowlSpeed (howlerServer), 10
changeTrack (howlerServer), 10

deleteTrack (howlerServer), 10

howler, 2, 5, 7–9, 11
howler-shiny, 4
howlerBackButton (howlerButton), 5
howlerBasicModuleUI (howlerModule), 8
howlerButton, 3, 5
howlerCurrentTrack, 7
howlerDurationTime

(howlerCurrentTrack), 7
howlerForwardButton (howlerButton), 5
howlerModule, 8
howlerModuleServer (howlerModule), 8
howlerModuleUI (howlerModule), 8
howlerNextButton (howlerButton), 5
howlerOutput (howler-shiny), 4
howlerPauseButton (howlerButton), 5
howlerPlayButton (howlerButton), 5
howlerPlayPauseButton (howlerButton), 5
howlerPreviousButton (howlerButton), 5
howlerSeekSlider, 9
howlerSeekTime (howlerCurrentTrack), 7
howlerServer, 3, 10
howlerStopButton (howlerButton), 5
howlerVolumeDownButton, 12
howlerVolumeDownButton (howlerButton), 5
howlerVolumeSlider, 11
howlerVolumeToggleButton

(howlerButton), 5
howlerVolumeUpButton, 12
howlerVolumeUpButton (howlerButton), 5

pauseHowl (howlerServer), 10

playHowl (howlerServer), 10
playSound, 12

renderHowler (howler-shiny), 4
runHowlerExample, 13

seekHowl (howlerServer), 10
stopHowl (howlerServer), 10

togglePlayHowl (howlerServer), 10

15

	howler
	howler-shiny
	howlerButton
	howlerCurrentTrack
	howlerModule
	howlerSeekSlider
	howlerServer
	howlerVolumeSlider
	playSound
	runHowlerExample
	Index

